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Abstract.  

Finding a path for calculus in the biological sciences is not just about asserting an inherent place, 

but by enhancing and communicating the value of calculus. Thus, the key to a successful 

calculus is by reflecting on the culture of mathematics, the culture of biology, and the cultural 

space we create at the interface. Disciplinary culture is shaped by and shapes the disciplinary 

content we value, the language we use, and the way we treat each other. I draw on traditions of 

testimonio to share experiences, both personal and professional, in which the skills of boundary 

spanning between cultures were developed, critically refined, and empirically tested in the 

context of developing curriculum for calculus for life and environmental science. 

Code switching and boundary spanning 

Like all people, we perceive the version of reality that our culture communicates. Like 

others having or living in more than one culture, we get multiple, often opposing 

messages. The coming together of two self-consistent but habitually incomparable frames 

of reference causes un choque, a cultural collision. (Anzaldúa, 1987, p. 78)  

It was less than a decade ago that I was first introduced to the work of Chicanx scholar Dr. 

Gloria Anzaldúa. I was writing a duoethnography with my cousin on our journey as mathematics 

educators in the United States and the ancestral legacy of mathematics education we shared in 

Peru. It was more recently that I was introduced to Dr. Anzaldúa’s work translingualing as she 

wrote about negotiating cultural borders from Mexico to the United States in La Frontera 

(Anzaldúa, 1987). 

Like Dr. Anzaldúa, I grew up in two worlds - a father from South America and a mother from 

the United States whose ancestors arrived in the 1800s from Sweden, England, and Germany. 

My dad was Catholic and my mom was Protestant. My father’s first language was Spanish, and 

my mom’s first language was English. She nearly failed Spanish class in high school.  As I was 

growing up, I did not realize that I was in Nepantla, learning how to bridge the gap between the 

mailto:cdeaton@bates.edu


 

cultures of my parents. I consciously spent more energy navigating the gap between my parents’ 

culture and the evolution of society. But in reality I have always been at Anzalda’s La Frontera - 

a world away from the physical border, but at the cultural borders within our family. 

At an early age, I understood that how I acted in church with my mom was very different than 

how I acted in church with my dad. Church services with my mom were about church hymnals 

and choir and gatherings were fun and loud, but focused around plays and craft fairs. Church 

services with my dad were in Spanish with a touch of Latin, ritualized praying and minimal 

singing. Church gatherings were all night parties due to quinceañeras with dancing and never-

ending food. My mom’s culture, the culture of British colonization, dominated my experience in 

the world. My dad’s culture - mezcla of Indigenous and Spanish colonization imported from 

Latin America - was limited to a minoritized and underserved neighborhood of Providence, 

Rhode Island. 

Later as I learned, researched, and taught at the interface of mathematics and biology through 

college and my career, I would unconsciously analyze and make decisions around the cultural 

norms of each discipline. It was natural for me to intentionally plan about how to fit in, how to 

dress and how to act, which jokes I could tell for mathematics audiences and which for biology, 

and how to anticipate power dynamics which might shape interactions. It was natural for me, 

because I had been expected to assimilate all my life, code-switching[1] as necessary.  

To establish credibility among mathematicians, I would plan to discuss a proof or show evidence 

of long equations behind the model simulations I presented. To establish credibility among 

biologists at conferences, I only had to state I was a mathematician. But to establish credibility as 

a biologist, to biologists, I had to understand the context of biological questions, understand the 

epistemology of the field, and reasonably justify any abstractions to my models with reference to 

prior experimental studies.  

As a mathematics PhD student at the University of Tennessee with a concentration in 

mathematical ecology and evolutionary theory, I spent many years in a Ecology and 

Evolutionary Biology department journal seminars. The last year I was there, at the beginning of 

the semester, we performed re-introductions for the new graduate students and faculty. When I 

introduced myself as a mathematics major, the ecology and evolutionary biology students who I 

had known for years were shocked. They did not know my primary department affiliation was 

 
[1] Code-switching is a term used to describe switching between language and cultures. In marginalized communities 

it is often performed due to assimilation pressures as a matter of survival in hegemony (McCluney et al., 2019). 



 

mathematics. At the time this was a great honor - a sort of proof of my mastery of code-

switching.  

To be able to successfully code-switch is to temporarily assimilate into a context and hide the 

presence of other identities. Since then, I have come to instead embrace Nepantla, an Indigenous 

idea introduced to mathematics education by Rochelle Gutiérrez (Gutiérrez, 2017). By being in 

the “in-between,” one experiences a new space of possibility. While code switching was a matter 

of survival and a drain on energy, the experience of code switching in my upbringing gave me an 

understanding of culture that would later impact how I engaged in interdisciplinary STEM 

education. 

To me collaboration between disciplines is more than just working on the same grant or paper. 

To me, collaboration in mathematics education and biology education has been about people 

working together. People with their own cultural histories, norms, and languages. People who 

have to learn how to value each other’s contributions to STEM and STEM education and then 

find ways to collaborate around this shared vision (Eaton et al., 2023). Dr. Joe Redish writes 

about this extensively in his work between introductory physics and biology (Redish, 2012). 

Throughout this paper, I use a form of critical autoethnography, a testimonio, to share 

experiences and conocimiento which have shaped my approach to humanizing interdisciplinary 

STEM education and research (Quicke, 2010; Rodriguez-Campo, 2021). 

Value and Language 

As an assistant professor, I taught mathematics at Unity College - a small, undergraduate, private 

liberal arts college which trained environmental professionals. At the time I arrived, the college 

was undergoing a self-study due to a regional accreditation review. Some biology majors were 

considering eliminating Calculus I from the list of required courses (Eaton & Highlander, 2017). 

The reasoning: students were not choosing their program or major because they would have to 

take calculus, and either did not want to take mathematics other than statistics or did not have the 

prerequisites. Upon deeper probing, both biology students and biology faculty felt calculus was 

irrelevant to biology. This is not an uncommon conversation among biology and other majors 

which require calculus.  There is plenty of research to illustrate how calculus has become an 

overzealous STEM gatekeeper (Ellis et al., 2016). Many biology departments have eliminated 

calculus as a requirement or have hired their own calculus instructor for a customized experience 

- like many biostatistics courses already. 

Because of student interest, I had already been including more relevant biology applications in 

the calculus course. But now I had a new audience to please - major program directors.  I set out 



 

to create a calculus experience that also would deliver what program directors valued. First, I 

created a list of calculus topics and surveyed faculty across the programs to understand which 

topics were most important for their majors.  

The results of my survey were disappointing. Very few topics were considered important. This 

was likely a fundamental contributor to the ongoing conversation to eliminate calculus as a 

requirement. But from a content analysis perspective, this made little sense. Prior conversations 

with all of these individuals indicated that population assessment and management relied on 

underlying theoretical dynamical systems models, modeling is a fundamental contributor to 

understanding climate change in the geoscience courses, and economics models are used in 

conversations about sustainability and resource management. I decided to follow up with one on 

one interviews with some of these program directors to ask why topics like “derivatives” were 

not listed as important. 

I discerned a key difference in those conversations: understanding “derivatives” were not viewed 

as important, but understanding and describing “rates of change” was considered important. To 

mathematicians, these terms describe the same concepts. To our colleagues, scientists, and 

students, in life and environmental science, these terms are fundamentally different. 

“Derivatives” are perceived as a set of abstracted formulas and rules. “Rates of change” 

describes how these abstracted concepts are useful in their fields. Likewise, “first order 

differential equations” rated extremely low, but “feedback loops” rated extremely high. Redish 

and Kou describe these as differences in the “‘dialect’ of speaking math” (2015, p. 563). I 

incorrectly assumed my audience already had fluency in translating my dialect of math to their 

disciplines and could easily recognize the value of abstracted mathematics. They valued calculus, 

but more specifically, their dialect of calculus (Eaton & Highlander, 2017). See works of Diaz 

Eaton and Callender Highlander for the final version of the survey. 

As a direct result of my new survey findings, instead of dismissing exponential functions as 

precalculus material, I contextualized exponential functions from a modeling perspective in 

Calculus I. We introduced geometric sequences and equilibrium first. Then later, after 

introducing the idea of infinitesimal difference, change, and derivatives, re-introduced the 

continuous analog - exponential equations. Together, we solved the mystery of why exponential 

functions matter; They are an alternate form of the simplest autonomous differential equation 

describing a situation in which the instantaneous rate of change is proportional to the current size 

or magnitude. This key idea is what sets the exponential curve apart from all other functions with 

positive first and second derivatives. It also explains why exponential functions are heavily used 



 

in population dynamics - because populations like bacteria continuously reproduce in proportion 

to their current number. 

I collaborated with Dr. Callendar Highlander who also taught a newly revised biocalculus course 

at the University of Portland and Dr. Aikens, a qualitative researcher, to analyze student data 

from across both schools’ new biocalculus students. One interesting surprise was that on pre- and 

post- course surveys, students did not report significant changes in their belief of mathematics' 

utility-value to biology. However, it was in the qualitative responses, where they were asked to 

describe how mathematics is used in biology that we saw the biggest and most significant 

changes. Students used more specific examples and showed a newly gained fluency in discussing 

mathematical terms in biology (Aikens, Highlander, & Eaton, 2021).  

One year I had the opportunity to co-teach Spanish. Reading the literature on teaching foreign 

languages allowed me to reflect on mathematical translation as linguistic practice. It is not 

enough to teach vocabulary and grammatical rules.  You must also understand how to put these 

together in a meaningful sentence in the context of a conversation which takes place within a 

particular culture. Over time, you can move from translating words to translating ideas - possibly 

the difference in relying on Google Translate versus a trained interpreter. We read Pablo Neruda, 

compared the Spanish and English versions, and discussed possible alternate translations to 

preserve the word choice, the ideas, and the art - both visual and auditory - of the poem.  I use 

the example of saber and conocer to illustrate. These are two words that mean”to know” in 

Spanish. We use saber when we are typically talking about knowing a fact or learning a skill, 

and we use conocer when knowing a place or person. It is not enough to teach calculus as a 

collection of definitions and algebraic rules and ask “¿Qué sabe?”. We must focus more broadly 

on translation, between representations and dialects, between disciplines and cultures and ask 

“¿Cómo lo conoce?”. We already “know” this linguistically in Spanish-speaking cultures, as 

accumulated knowledge is referred to as “conocimiento” or wisdom. 

Modeling and Microaggressions 

In 2015, collaborators and I convened a working group on the teaching of modeling at the 

National Institute for Mathematical Biology and Synthesis. Our working group represented 

researchers from mathematics, biology, math biology education, physics education, science 

education, math education and professional development. By the end of our first in-person 

meeting, it was clear that we were circling around something fundamental - we each had 

different understandings of the words “model” and “modeling” based on our (sub)disciplinary 

epistemologies. Those in biology defined “modeling” in ways that implied that datasets were 



 

involved in the process of creating a model. Those in mathematics defined “modeling” in ways 

that implied that a dataset was unnecessary in the creation of a model. Translation of language 

was not the issue - it was that concept the language conveyed that had a different meaning in 

each cultural context. 

We coined the term “disciplinary microaggressions” - an act of exclusion that may or may not be 

intentional and occurs as a result of disciplinary cultural power dynamics and language - from 

our own testimonios. During the working group, I recounted how I was told that one of my 

research students was not eligible for the research award because their modeling project did not 

require them to collect their own data. My colleague recounted how her department criticized her 

bioinformatics research using data science because it did not follow a “scientific method” in 

which there was a priori development of a testable hypothesis. I also admitted how I have been 

the perpetrator of microaggressions myself. I was visiting an institution to give a talk and one 

biologist, who knew I was a mathematician, enthusiastically offered to show me their data. In 

response, I said “I do not work with data - I worked with theoretical models,” which effectively 

shut down the conversation. I did not intend to cut off the conversation - I had only classroom-

based experience with data and no experience with data fitting in my own research yet. I did not 

consider myself a statistician and thought I was helpfully clarifying a distinction in fields. 

Building a theory of disciplinary microaggressions gave me a new mental model to make sense 

of my prior interactions and to reflect on my own behaviors to improve. I can more clearly see 

and reject many ways in which our STEM cultures enact exclusionary macro- and micro- 

aggressions within and between disciplines as a way to establish hierarchy.  

These conversations resulted in a “Rule-of-five” paper which laid out definitions for model and 

modeling that were inclusive of all our perspectives (Eaton et al., 2019). Our definition of model 

allowed us to embrace multiple representations common across calculus, science education, and 

math education: algebraic, numeric, visual, verbal, and experiential. Our definition of modeling 

allowed the process of modeling and the process of science to start the process of abstraction and 

modeling at any of these representations embracing the multiple epistemologies present. This 

helped us see the commonalities across our work and perspectives so that we could achieve more 

together. This reflects a second Indigenous epistemology which Gutiérrez discusses, In Lak’ech 

(Gutiérrez, 2017). However, in the Rule-of-Five paper, we used the parable of the blind man and 

the elephant as an analogy. Each of us alone, with our own disciplinary perspectives, are 

discovering something about some context, and together they build broader stories.  

The framework helped biology and science educators understand how mathematical modeling 

may generate data as a later step, but why data is not seen as a requirement to engage in 



 

modeling. The mathematicians also came to appreciate how the field experience and the wet lab 

were important entry features of the biology modeling experience, which might be better 

leveraged by mathematics classrooms. Together our differing approaches and epistemologies 

were part of a broader picture of creating understanding. For example, mathematical models and 

field or lab-derived data are compared with each other and this is used to refine our mental 

models. Drawing on the rule-of-five framework to counteract disciplinary microaggressions also 

helped me personally reconceptualize my own relationship to data as a mathematician.  

Our paper (Eaton et al., 2019) positioned the rule-of-five framework as a way to provide an 

inclusive scaffold of knowledge and skills for teaching modeling across life science and other 

disciplines. In the traditions of Yosso’s cultural wealth (Yosso, 2005), we hoped to help 

instructors see and articulate the cultural assets students bring to calculus through their culture 

and knowledge of their life science disciplines. Instructors could also use the framework to 

reflect on engaging life students through the comfortable and familiar doors of data and 

experiential learning.  For example, I now contextualized exponential functions in Calculus I by 

introducing a long-term dataset illustrating rising carbon dioxide levels over time. We could then 

introduce log-transformation of data and practice linear model fitting.  

Intersectionality is a framework to discuss how race, gender and class identities introduce 

multiple, intersecting, and potentially multiplicative axes of oppression (Crenshaw, 1991). 

Applying an intersectionality framework to research in higher education has expanded this lens 

to additional social identities such as queerness and college identities such as status as a transfer 

student (Harris & Patton, 2018; Leyva & Joseph, 2023). Our use of “disciplinary 

microaggressions” named how (sub)disciplinary identity, values, and hierarchies might shape 

experiences in STEM classrooms, STEM departments, and STEM collaborations. With the 

broader framework of intersectionality added to my mental model, I have been re-examining the 

same testimonios shared above to consider how disciplinary identity interacts with other social 

identities. My bioinformatics colleague most certainly had experienced a subdisciplinary 

microaggression, but had also talked about how she was one of the only women on the tenure-

track in her department. Withholding award eligibility for research I had mentored was certainly 

a disciplinary microaggression to assert the value of experimental science [over mathematical 

modeling]. But this act has to also be contextualized by the identity of the research mentor: the 

only faculty of color in the college, a new assistant professor, and a representation of a broader 

fundamental change in the value of mathematics in the field of biology. 

A common phrase is that “children learn from the actions of their parents.” My quest to 

implement a more inclusive paradigm in my teaching and with my students has been deeply 



 

informed not just by working with students over many years, but also by my experiences with 

other colleagues in academia. I remember talking to a colleague who was a first-generation 

college student, and she said that you can learn a lot about a faculty member by the way they 

treat staff members at the college. Likewise, it is hard to imagine how to be inclusive in the 

classroom if you enact harm between faculty members, at professional conferences, or in the 

broader community. I work with intentionality to reach across the many borders drawn on our 

work across disciplinary and social identities and continue to find ways to include instead of 

exclude. I consciously make the assumption that all people have something to contribute to the 

intellectual conversation, not regardless of their background and identities, but specifically 

because of their backgrounds and identities. This is the underlying message of the Rule-of-Five 

paper, but D’Ignazio and Klein discuss this more thoroughly in their book Data Feminism: 

Rather than viewing these positionalities as threats or as influences that might have 

biased our work, we embraced them as offering a set of valuable perspectives that could 

frame our work. This is an approach that we would like to see others embrace as well. 

Each person’s intersecting subject positions are unique, and when applied to data science, 

they can generate creative and wholly new research questions. (D’Ignazio & Klein, 2020, 

p. 83). 

Relationships and care 

It is challenging sometimes to give advice to others about how to best collaborate across 

mathematics and biology, because I see myself as both a mathematician and a biologist. My 

training throughout my degrees has been interdisciplinary, though my degrees have been in 

mathematics. But in taking formal coursework from both departments, I was immersed in the 

culture of each discipline. I was also fortunate to have courses which drew from both disciplines 

simultaneously. But as I have moved into education research, computer science, data science, 

and social justice where I have less formal coursework, I have realized how important it is to 

read the literature of those disciplines, engage in conversations and collaboration with 

researchers in those disciplines, and understand their cultural values and norms. Nothing has 

helped me more in these endeavors than creating and sustaining personal and collaborative 

relationships beyond disciplinary walls.  

It took three years of conversations and idea refinement to finish the rule-of-five paper. 

“Relationships”, more than “collaborations” as a term, implies a deepness in the thought and 

sharing across positionalities, cultures, identities, and context. One of the reasons why I believe 

biocalculus reform at Unity was so successful was because Unity students had an extremely 



 

strong disciplinary identity related to their major. Many students never switched their majors, 

and even if they did, the choices all lay within life science and environmental studies.  

After working to design calculus for biology, environmental science, and wildlife, I turned my 

attention to marine biology, because of the relationships I developed with my collaborator while 

carpooling. She shared feelings of exclusion from the conversation about calculus for biology. I 

was guilty of this exclusion. I assumed that because I was using examples of modeling fish stock 

assessment, I was attentive to marine biology. But I learned that freshwater ponds are not salty 

marine environments, and I worked with her to contextualize the aforementioned carbon dioxide 

and climate change project against a need to address the health of coral reef ecosystems. It was 

only through developing relationships that I could see the ways in which I was erasing identity 

and expertise and find pathways together to new possibilities.  

We have invested significant resources into researching “team science” so that STEM 

practitioners can work with each other across cultural boundaries (Hall et al., 2018). When I 

began implementing a full day to discuss teamwork organization and practices at the beginning 

of class-based team projects, my returns were ten-fold. Now, with the interest in open science, I 

see developing diverse open science [education] communities to share and improve science 

[education] just as important as developing the cyberinfrastructure to share open science 

[education]. But developing collaborative communities across cultural spaces is not just a 

transactional checklist of practices - it is grounded in relationship building. 

STEM academic research culture does not always value investment in relationship building. 

Mathematics, in particular, has a historical perception of solitary genius - but here, I offer 

counter narratives. A conservation law enforcement professor stopped me once in the hallway, 

excited to tell me about a class activity using time-of-death tables for animal necropsies. I 

learned that they were used in poaching cases and now had a new tool to engage students in 

understanding Newton’s Law of Cooling. The wildlife biology professor with whom I shared 

many teaching discussions over lunch would reference my calculus class often as a source of 

learning population modeling concepts more deeply, which raised my course’s credibility and 

value to students. My teaching and my scholarship have greatly benefited from carpool rides, 

hallway conversations, and cafeteria lunches. 

Fostering community is easier when there is clear value to all participants - a mutual benefit and 

a shared goal. This conceptualization is likely influenced by my PhD research on the evolution of 

mutualistic communities. Mutualistic communities, such as plants and pollinators, are diverse 

and resilient communities. I see a mutualism between the disciplines of mathematics and biology 

and a mutualism between humans in the disciplines of mathematics and biology.  Therefore, the 



 

fostering of inclusive and mutualistic communities is a critically important and necessary 

condition for a resilient and diverse STEM and STEM Education.  

Coincidentally or not, reciprocity is the third and final Indigenous epistemological principle that 

Gutiérrez introduces in Living Mathematx (Gutiérrez, 2017). Together, Nepantla, reciprocity, 

and In Lak’ech, are the philosophies that have shaped my work netweaving (Goldstein et al., 

2017). I foster communities of learners and leaders, first as the Consortium Director for QUBES 

(Donovan et al., 2015), with networks funded by the National Science Foundation’s Research 

Coordination Networks for Undergraduate Biology Education (Eaton et al., 2017), and more 

recently with the RIOS institute (Eaton et al., 2022). 

However, as much as my netweaving may seem to focus on postsecondary educators, students 

are a key part of our communities as well. My biocalculus redesign work was at its best when I 

involved students as collaborators, and I have had many students as curriculum advisors, 

research assistants, and co-authors. In Lak'ech is a reference to seeing yourself in the person you 

are greeting and when used as a classroom practice or a research practice with students, it 

demands that we break down the hierarchies that are part of academic epistemologies (Gutiérrez, 

2017). Viewing students as colleagues with their own knowledge to share is a form of “open 

education” and creates pathways for students to participate in work that matters to themselves 

and to each other (Eaton et al., 2022). I pair that with attention to creating a community of care 

so that it is clear that we are all working towards the same goals together, supporting each other, 

and caring for each other’s success (Clemens & Robinson, 2021).  

When Aikens, Callender Highlander, and I (Aikens, Highlander, & Eaton, 2021) analyzed open-

ended student responses in surveys about our newly revised biocalculus courses across two 

institutions, we focused on students whose attitudes towards mathematics improved. Students 

reported more positive attitudes due to realizing mathematics utility-value for life science, due to 

understanding the mathematics presented, and due to the instructor fostering a positive learning 

environment (Aikens, Highlander & Eaton, 2021). Creating and leveraging relationships that 

reach across disciplinary boundaries, helps us translate the dialect of mathematics. However, this 

development of “instructor-student rapport” and mutualistic relationship, where instructors care 

about the student and their success, is just as important in creating positive relationships with 

mathematics. Again, we see a nexus where valuing disciplinary cultures intersects with valuing 

the individual as a human, with relationships at the core of this work.   

Humanizing and contextualizing 

What we choose to discuss is just as important as what we choose not to discuss.  



 

Dr. Callender Highlander and I had two separate methods for assessing student outcomes in our 

biocalculus courses in comparison to others’. Each returned a different, but important lesson. At 

the University of Portland, Dr. Callender Highlander compared three quizzes that the traditional 

calculus and the biocalculus course both administered (Eaton & Highlander, 2017). The first quiz 

was primarily a test of precalculus skills and the traditional calculus students outperformed the 

students in biocalculus. This finding suggests that biology students had fewer skills in the 

prerequisite precalculus course, but it could have also reinforced the stereotype that biology 

students were “worse at math.” However, by the third quiz at the end of the course, the 

biocalculus students outperformed the traditional calculus students. This directly counternarrates 

the stereotype - biology students are indeed capable of high mathematics achievement, but 

needed a different kind of experience to realize that achievement.  

I used the Calculus Concept Inventory (CCI) to understand learning at Unity College in the 

biocalculus course as it was revised (Eaton & Highlander, 2017). This allowed a comparison to 

outcomes at the University of Michigan which had extensive CCI gain data for its traditional 

calculus course and was considered a leader in calculus research (Koch & Herrin, 2006). The 

biocalculus course was doing admirably well, except for I noticed that in two semesters the CCI 

learning gains crashed. The most significant change: implementing gateway-style examinations 

like those at the University of Michigan. Students had to achieve a passing grade on each 

examination in order to pass the course. However, I could tell that my students were extremely 

stressed, so after these two semesters, I removed them. My students’ CCI gains then bounced 

back.  

It could be argued that gateway examinations exposed a fundamental difference in how biology 

students and engineering students best display learning in calculus. However, it may also be 

important to consider that incoming Michigan students boast a nearly perfect math SAT score 

and that many students at Unity struggled with disabilities and severe math anxiety.  The context 

of our educational reform deeply matters when theory meets implementation. Kanim and Cid 

(Kanim & Cid, 2020) have a paper describing this issue in physics education, with particular 

attention to whether our research in the United States is appropriately capturing populations that 

are underrepresented in STEM. 

Over the years, I have spent more time making sure curriculum and classroom experiences are 

crafted with universal design in mind, creating experiences that are accessible and inclusive for 

students with disabilities without additional accommodation. These students are invisible often 



 

until accommodation notices are sent to instructors[2], and then we only know to accommodate 

students who ask. In addition, many of the accommodations we make, such as extra test time, are 

visible to other students and may be perceived as “unfair” to such students (Deckoff-Jones & 

Duell, 2018). In many of the classes I teach now, I have replaced exams with projects. Extra time 

for due dates are easily accommodated as long as they show progress towards their goal. This 

kind of design illustrates to students that I see them, but they maintain control over who sees 

their disability or their mental health status. This care-based approach has become even more 

important in the midst of our mental health crisis in education during the pandemic (Lee et al., 

2021). 

There are also ways that I have intentionally made the invisibilized visible. I talk about key 

figures behind the science, who they are, and make sure that the readings and research I use in 

class represent the diversity of mathematicians and scientists I want to nurture. This includes 

unpacking the racist past of those that are behind the foundations of statistics as I discuss 

Pearson’s correlation coefficient (Quick, 2020). I share my identity as a queer Latina in the 

United States more because I am often read as part of the hegemony (Busch et al., 2022). The 

more than 60-year data set on carbon dioxide emissions I had adopted to contextualized 

exponential functions came from an observatory on Mauna Loa, a mountain in Hawai’i; This 

became an opportunity to make visible the long struggle that Native Hawaiians have fought for 

sovereignty, with more recent news regarding a proposal for a new observatory on the sacred 

mountain of Mauna Kea (Kahanamoku et al., 2020).  

A colleague of mine asked what my classroom “intervention” was in order to propose an 

educational research experiment. What is it about STEM culture that this humanizing approach is 

considered an intervention? I do not mean that we have to reject our own culture completely, but 

rather recognize how our cultures are already shaping academia and STEM in ways that can 

exclude people and perspectives that are valuable to our future. Calculus can no longer afford to 

be a “gatekeeper” (Stinson, 2004). We need to visibilize, value, and center the intersectional 

disciplinary and social identities of our students and each other so that we can achieve 

interdisciplinary and inclusive STEM education experiences.  
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Abstract: Calculus forms a critical mathematical foundation for study in engineering. Calculus 

courses are required as prerequisite to nearly every engineering class; failure in calculus is 

devastating to students’ graduation timeline. The way ideas manifest themselves in the context of 

engineering coursework. This talk illustrates the differences between mathematical training of 

engineering students and engineering study via three examples: The rigor of limits and continuity in 

engineering coursework, the difficulty of derivatives in engineering coursework, and the units of 

measure of integrals in engineering coursework.  

Introduction: Calculus in engineering practice  

Calculus unquestionably holds a key position in the study, development, and practice of 

engineering. The pioneering work using calculus to describe the constructed world by the 

Bernoulli's and Euler developed beam theory in 1750 using the foundations of calculus, which a 

century later was used to design the iconic feat of engineering, the Eiffel tower. Around the same 

time, calculus was used to develop the elementary theory of fluid dynamics. The theories of 

electromagnetism, transmission lines, yield of soil in construction, radio communication, plastic 

failure, nuclear energy and nearly all other engineering disciplines require calculus to access the 

theoretical foundations of study.   

Most engineers do not use calculus daily, but their technical activities often have calculus in the 

background, often such that the engineers themselves do not recognize they are using calculus in 

their work. [citation] The calculus in engineering is often shunted into tables of pre-computed 

properties of continuous shapes that can be looked up, but these tables are constructed from 

calculus.   

Background: Calculus in engineering education  

Calculus forms the theoretical bedrock for most engineering disciplines, and most engineering 

programs require one and a half to two years of study in calculus. For example, take the curriculum 

in electrical engineering in figure 1. Nearly every course of study requires calculus as a direct or 

indirect prerequisite. On-time graduation is strongly dependent on performance in calculus, as 

calculus sits at the root of several very long prerequisite course chains. A single failure at any point 

along this progression will inevitably delay student graduation. For this reason, engineering deans 

watch the progression in calculus closely, occasionally launching initiatives to teach calculus within 

the college of engineering. The longest in this example is 8 trimesters long:  

Calculus 1> Calculus 2 > Calculus 3 > Differential Equations > Transient Circuits > Electronics 1 > 

Electronics 2 > Senior Design. 



 

 

 
Figure 1: Calculus prerequisites in an electrical engineering curriculum 

Engineering students emerge from calculus often q able to do a few narrowly defined computations, 

but struggle to interpret the results of calculations. Even interpreting whether an integral has the 

correct sign when placed in a physical context is challenging for students. Due to these challenges, 

many engineering faculty teach classes that require calculus as a prerequisite, but without actually 

requiring any calculus of their students (Ferguson, 2012). Some faculty openly admit that their 

courses require calculus as prerequisite only to ensure that students have proper algebra skills, not 

because the course requires any calculus at all (Faulkner, 2018). 

Engineering students frequently bemoan the lack of applications to their engineering ambitions 

encountered in introductory calculus (Biehler, 2014). Many calculus classes are taught purely in the 

abstract, with  many books containing few applications, and the applications that are included being 

often inauthentic camouflage for standard abstract tasks (Wijaya, van den Heuvel-Panhuizen, & 

Doorman 2015). This phenomenon is striking given the origins of the subject in describing the 

mechanical universe mathematically.  

This work focuses on introductory level first and second-year engineering courses, which list 

calculus as a direct prerequisite. More advanced third and fourth-year engineering courses apply 

more calculus, but by this stage any attrition of engineering students has already occurred. This 

paper draws heavily from my PhD dissertation on the mathematical education of engineers. Two 

main differences present themselves in the way numbers are used in engineering and the way they 

are learned in mathematics courses: units and orders of magnitude, the “mathematics of physical 

quantities” (Biehler, 2015). The properties of numbers manifest in all three of the major application 

areas of calculus in engineering.    



 

 

Limits and continuity in engineering 

Limits as covered in many Calculus I classrooms do not reflect their use in engineering. The 

informal use of infinitesimal quantities, 0e−   is commonplace in engineering lectures. Most 

limits in early engineering classes can be handled with more informal notions of limits. Formal use 

of limits doesn't become necessary until later engineering courses such as signal processing. The 

most complex limit that is evaluated in a sophomore-level circuit theory course is this high-

frequency limit of a circuit response:  

4 2 4 2 4
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| ( ) | lim 0H

A B A→
=  =    

+ + +
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The vague idea of a limit defines big-O notation in computer science, but the use of limits is 

restricted to a tier list of faster and slower functions. This requires conceptual knowledge of the idea 

of a limiting process, but practiced skill in evaluating complex limits is not required to use the idea 

correctly.  

In engineering, continuity is important as a check on physical possibility, and discontinuity implies 

specific physical conditions. Capacitor voltage can never be discontinuous, a discontinuous shear 

curve implies a point load at the location of the discontinuity, etc. In calculus classrooms this is a 

property that is checked (Czocher, Tague & Baker, 2013), but the consequences of a presence or 

lack of continuity are less emphasized.   

 

Figure 2: Shear and bending moment diagrams (Johnson-Glauch & Herman, 2017) 

 

In engineering the notion of continuity emerges as an expression of physical constraints obeyed by 

certain systems. Certain physical quantities are allowed to be discontinuous; others are not. 

Continuity is used as a check on the reasonableness of a calculation. For example, the shear in a 

beam is permitted to be discontinuous only at the location of a point load.  

In upper division courses such as signal processing, a few trickier limits are sometimes evaluated, 

such as the hole-filling of the discontinuity of  ( ) sin( ) /sinc x x x= , but these are rare.    

The  “impulse” or “delta” function ( )t  or ( )x , by contrast, occurs frequently in engineering 

coursework, but is only very awkwardly described in terms of limit-based real analysis. This 

function occurs in signal processing, control systems, electromagnetic field theory, and other areas. 

In the shear and bending moment example above, the point-like load of 20 N is a delta function. 

Only at the location of this concentrated load can the shear be discontinuous, as it is at x=5 m. The 

bending moment can only be discontinuous at the location of point-like twisting forces, and since 

none occur in the beam, the bending moment diagram must be continuous. 



 

 

Derivatives in engineering: Interpretation of simple functions  

In engineering, only rather simple functions and their derivatives are frequently encountered: sines, 

cosines, polynomials, exponentials with linear terms inside. For example, the complexity of 

function that must be  differentiated in engineering coursework is generally very simple, only lines, 

sinusoids, and exponentials are used regularly, especially in lower-level engineering coursework. In 

this sense, the topical coverage of introductory calculus is “overkill” compared to the needs of 

engineering curricula. [alejandro’s paper] 

By contrast, in engineering it is far more common and vital to interpret the consequences of 

derivatives. For example, consider the  Lennard-Jones potential in materials engineering, 

12 6
( )

A
E r

r r

B
= −  

Engineering faculty report that though students might be able to evaluate the derivative, they cannot 

extract from that derivative the physical meaning, that the location of its zero is the point of 

equilibrium . Students in engineering who are capable of performing   

The most challenging derivative encountered in a typical vibrations or circuit theory course is of the 

form ( )2sin(3 ) td
t e

dt

−
 

The completely robust set of techniques to evaluate derivatives of any function, no matter how 

tangled such as sin(cos(tan( )))
d

x
dx

, is in a sense overdeveloped compared to the needs of 

engineering students. In engineering coursework, derivatives usually act on elementary functions, 

with one application of the chain rule needed for a linear term inside.  

By contrast to evaluation of such derivatives analytically, recognizing the units of measure imparted 

by the derivative operation itself is essential to using calculus correctly in engineering. For example, 

consider this typical engineering task in an AC circuits course: 

The current flowing through an 300 mH inductor is ( ) 200[A]sin(314[rad/s] )i t t= , compute the 

resulting terminal voltage using ( ) ( )
d

v t L i t
dt

= .  

In this task, application of the chain rule and multiplication by the angular frequency of 314 rad/s 

provides the change of units. Handling of the dimensions of inverse time associated with a time 

derivative is emphasized in such courses. In the same course, the question might be posed 

graphically:  

During what interval is the greatest voltage applied to the 508 H inductor the greatest in Figure 

3? 



 

 

 

Figure 1: Voltage waveform applied to MRI magnet 

In such instances, calculus itself is not required since the function is piecewise linear, slopes suffice, 

but students must be able to translate between an equation given in derivative form to the 

computation done in simple algebra.  

Integrals in engineering: Piecewise functions and units 

In the construction and use of integrals in engineering, the “informal infinitesimals” method [Ely, 

2019] is alive and well. Almost any engineering textbook makes extensive use of these (Non 

rigorous) methods to develop physical results. These infinitesimals are called “control volumes” in 

some parts of engineering, practicing how to set up and use these control volumes is a standard unit 

in any fluid mechanics class. Consider this typical application of integrals with an example from 

power electronics.  

A MOSFET is an electronic switch, A gate charge of 8 nC is needed to turn the switch on, which 

requires an input of electrical energy by the equation 

8nC

0

( ) .

q

q

E V q dq

=

=

=  Compute the necessary 

energy for the MOSFET in Figure 4. 



 

 

 

Figure 4: Piecewise linear function to be integrated 

This function has physical units (nanocoulombs on the x axis, volts on the y axis), so the student 

must interpret that the integral is the area under the curve, and that this area has units of nanojoules, 

the product of the x and y axis units. Engineering students leave calculus inexperienced at handling 

the physical units and orders of magnitude required by this mathematical task. The function is not 

given analytically, but graphically. It is not a single function, but defined piecewise. The pieces 

themselves are simple linear functions, which is very common in engineering. The actual calculus 

need not be performed, just the area under the curve. However, interpretation of the graph certainly 

requires calculus concepts, though not calculus procedural skills. Many concepts in engineering that 

use calculus in concept do not use them in implementation, the calculus is avoided by using simpler 

methods, or referring to tables of pre-computed forms. An astute student would estimate that the 

area must be a bit larger than half the product of the extreme values.  Additional examples include 

centroids in the study of statics, tortional moments of area in mechanics of materials, or tables of 

laplace transformations in controls. Each of these requires a conceptual knowledge of calculus to 

understand, but the calculus computations are not performed by the student.  

The functions that must be integrated in introductory engineering coursework are very simple, but 

often piecewise-defined. Piecewise-linear functions must be integrated frequently in introductory 

circuits or statics courses, only rarely is a function more complex than the exponential integrated.   

When constructing integrals to describe behavior of physical systems, the “multiplicative based 

summation” interpretation is the dominant interpretation of the integral. A small differential 

“chunk” of the system is chosen, and the “weight” of that small piece is added up. Depending on 

whether the “chunks” are summed in time or in space, different verbs are used to describe the 

integration action, which correspond to the “adding up pieces” and “rate accumulation” 

interpretations of the integral detailed in Ely’s work.   

Consider the task in Figure 5 where students must choose the correct bending moment from the 

shear diagram, where the shear v must be integrated, but with the constraint that the shear must 



 

 

have value 0 at the end of the beam, which experiences no stress. The integral’s “initial condition” 

does not occur at the joint at the origin, but at the extreme end of the beam. 

  

 Figure 5: Typical integration task in statics 

Opportunities for Collaboration 

Students would certainly perform better at application tasks in following coursework if the task of 

application were practiced in calculus. But from where will this diversity of application tasks come 

from? Not from existing textbooks (Wijaya, van den Heuvel-Panhuizen, & Doorman 2015), these 

have few applications, and few of the few are authentic. The only text I know of with a true 

abundance of applications is that of Rattan and Klingbeil (2021), but this text is mostly pre-

calculus. What can a motivated and enterprising mathematics faculty member do? By no means can 

a typical faculty member suddenly become an expert in application areas of not only every 

subdiscipline of engineering, but every subdiscipline of chemistry, physics, business, biology, and 

every other discipline that depends on calculus. Such study would take multiple lifetimes. The client 

disciplines frequently complain of the lack of applications but do little to provide their expertise to 

their mathematical colleagues in a useful form: simplified, relevant tasks suitable for a novice. As 

stated by Scanlan (1985): 

“To be effective and useful the design of mathematics courses for engineering students must 

involve a continuous and informed dialogue between engineering and mathematics departments 

to which each must contribute fully. The process of dialogue is essential since neither must be 

the dominant partner. The difficulties usually arise not in deciding what is to be taught but how 

and at what level. This is where the engineering department must have a clear understanding of 

what is needed and be able to communicate this effectively to the mathematicians.”  

This communication continues to be a struggle 40 years later. On even a single campus, nobody in 

engineering knows what mathematics faculty are actually doing in class, and make assumptions 

based on their own university experiences. Some question the utility of even trying to provide 

applications, when no one application has any chance of interesting every student, or even a 

majority of students (Corey, 2018).  

Here I disagree with Corey based on my personal experience teaching circuits-for-nonmajors. I 

have a classroom of students who picked the not-electricity major on purpose, and it is my job to 

teach them about electricity. I have disinterested mechanical engineers, civil engineers, biomedical 

engineers, and computer engineers. I fight a similar rhetorical battle familiar to any calculus 



 

 

instructor (speaking as a former high school calculus teacher); I have a diverse audience that firmly 

but incorrectly believes that what I teach is irrelevant to their career ambitions. My experience 

presenting applications has been that authentic applications presented in sufficient number can be 

effective in motivating students to engage, but constructing these application tasks has taken great 

input from my colleagues. I am not an expert in biomedical instrumentation, mechanical controls, or 

civil structural health monitoring. Donations of example contexts, laboratory manuals of more 

advanced coursework, and lunchtime chats have helped develop a rich set of applications, with the 

course numbers for when this knowledge will reappear in the students’ major coursework.   

The introductory calculus class could teach substantially less topical content and still meet the 

prerequisite technical knowledge for introductory engineering coursework. Many topics (not 

concepts) do not reach application in engineering until far later in the curriculum, which offers 

flexibility  to the mathematics faculty. Many topics decreased sharply in use with the advent of 

powerful computational tools, so the time devoted to these topics (such as, for example, partial 

fractions expansion or convergence tests) can be repurposed. Much of what engineering faculty 

desire is a general level of mathematical competence from calculus, so the exact topic selection is 

less critical than it first appears. 

Calculus is a beautiful subject that describes our beautiful universe. I hope that collaboration 

between disciplines can lead more students to this view, or at least to acquiesce to its incredible 

usefulness.  
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Introduction to the structure of the discipline of chemistry 

In order to come to an interdisciplinary understanding of the field of chemistry, it would be 

useful to describe the structure of the discipline.  In particular, it would be illustrative to describe 

undergraduate chemistry in relation to physics, biology, and mathematics for the purposes of this 

conference. 

Chemistry is often described as the central science because it has applications and synergies with 

biology, physics, earth and planetary sciences, medicine, geology, plant science, and 

environmental science as shown in Figure 1.     

 
 

Figure 1:  Chemistry, the central science, with applications and connections to a variety of other 

science areas (Shapley, 2011) 

 

Outwardly, chemistry has connections to nearly every science one can imagine since everything 

around us is made up of atoms and molecules.  Inwardly, chemistry as a discipline is comprised 

of five subdisciplines with overlap between them (American Chemical Society, n. d.)   
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• Analytical chemistry focuses on obtaining measurements, analyzing, and interpreting 

them in such a way that it informs chemists about the composition and structure of 

matter.  Typically, analytical chemists use instruments to carry out qualitative and or 

qualitative analyses including separations; Collect, identify, isolate, and preserve 

samples; and they may validate and verify results through standardized methods 

including calibration.   

• Biochemistry lies at the interface of biology and chemistry, and indeed is sometimes 

called biological chemistry.  This subdiscipline explores the chemistry and chemical 

processes of living systems including plant, animal, and human systems. Often these 

chemists study a small part of a larger and more complex chemical/biological system. 

• Inorganic chemistry is the study of metals, minerals, and organometallic compounds.  For 

example, an inorganic chemist may study how to remove heavy metals from waste water, 

or drinking water.  They also study how to create new compounds with specific desirable 

properties (conductors, adhesives, etc.).  Often, they work with other chemists and 

engineers to solve problems.   

• Organic chemistry is the study of carbon containing compounds including the structure, 

properties (function), and reactivity.  There are many organic compounds simply 

composed of carbon and hydrogen, but organic compounds may contain a few other 

elements including oxygen, nitrogen, sulfur, and phosphorous (for example proteins and 

DNA).  Organic chemistry is a creative field that includes the synthesis of molecules 

(pharmaceuticals), agricultural chemicals, personal care products (cosmetics and cleaning 

solutions), fuels, plastics, etc. 

• Physical chemistry uses physics and mathematics to describe the interaction of atoms and 

molecules.  These chemists are often engaged in physically characterizing and testing 

properties of materials.  Among the subdisciplines of chemistry, this is the one that 

leverages the application of mathematics, sometimes on very large data sets, to reveal 

information about processes (protein folding for example) and materials.   

Undergraduate curriculum in chemistry 

Perhaps unsurprisingly the chemistry undergraduate curriculum is reflective of these five 

disciplines.  The American Chemical Society (ACS) approves baccalaureate chemistry programs 

and has coursework guidelines for the undergraduate program which include chemistry, physics, 

and mathematics courses (2023 ACS Guidelines for Undergraduate Chemistry Programs: 

Approved, n.d.). Tables 1 lists required coursework in these areas noting which courses have an 

associated laboratory.  Table 2 lists an 8-semester sequence of course work which serves as an 

example of the cadence across four years (note there are more required courses for graduation, 

usually totally at least 120 hours of coursework).  The physics courses are calculus-based, and it 

is common to complete the required calculus courses early in the plan of study. 

Table 1: Required courses for an ACS approved degree highlighting chemistry, physics, and 

mathematics. The number in front refers to the number of those courses in a semester (16 week) 

format 

Chemistry lecture with 

associated laboratory 

Chemistry lecture, 

no laboratory 

Chemistry, 

laboratory only 

Other requirements 
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2 General Chemistry 1 Biochemistry 1 inorganic 

laboratory (synthesis) 

2 Physics (calculus 

based: modern 

mechanics and 

electricity and 

magnetism) 

2 Organic Chemistry 2 Inorganic 

chemistry 

 3 Calculus 

2 Analytical 

Chemistry 

  1 Linear algebra** 

2 Physical Chemistry   1 Differential 

equations** 

*Note: Linear algebra and differential equations are often required by universities or colleges, 

but are not required by the ACS. They may also be taken as a single course. 

Table 2:  Sample semester by semester course schedule 

Year Fall Spring 

1 General Chemistry + lab General Chemistry + lab 

Calculus I Calculus II 

 Physics I + lab 

 

2 Organic Chemistry + lab Organic Chemistry + lab 

Calculus III Inorganic I 

Physics II + lab 

 

Differential equations 

3 Analytical I + lab Physical Chem. II + lab 

Physical Chem. I + lab Linear algebra 

  

4 Biochemistry Inorganic II 

Analytical II + lab Inorganic lab 

 

For students interested in a biochemistry degree, students complete the required calculus 

sequence, but not differential equations or linear algebra. Biology coursework in cell biology 

with laboratory and genetics with laboratory are required.  Concomitant with the increase in 
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biology coursework requirements there is a decrease in chemistry coursework such as removing 

Analytical II with laboratory and inorganic laboratory from the four-year curriculum.   

How Did Calculus Become Required in the Chemistry Curriculum? 

Inadequate experience in mathematics is the greatest single handicap in the progress of 

chemistry in America. (Daniels, 1931 p. 257, italics in the original)  

History is a complex and nuanced endeavor, and to shorten the history of the rise of the 

importance of mathematics in chemistry in the United States to a few brief paragraphs is to risk 

omitting nuanced details.  But that is the challenge and with that caveat the story shall unfold and 

the contributions of Farrington Daniels highlighted. 

The transformation of American chemistry from a heavy experimental emphasis towards a more 

theoretical understanding can be traced back to 1880-1930.  At that time one of the leaders of US 

science was Dr. Theodore Richards of Harvard University, who won the Nobel Prize in 

Chemistry in 1914 for “accurate determinations of the atomic weight of a large number of 

chemical elements” (The Nobel Prize in Chemistry 1914, n.d.). Thus, the culture of chemistry in 

the US gave greater privilege to laboratory measurements and experiments while de-emphasizing 

theoretical pursuits that required advanced mathematics such as calculus and differential 

equations.  However, the discoveries in chemistry and physics in thermodynamics, electricity, 

magnetism, kinetic molecular theory, statistical thermodynamics and quantum mechanics during 

this time period required mathematical prowess to interpret experiments and to drive forward 

understanding of the molecular world. 

Farrington Daniels received his doctorate from Harvard working in Richards laboratory in 1914 

and did this without taking calculus at any point (Servos, 1986; Alberty, 1994).  World War I 

scuttled a post-doctoral appointment in Germany, and after the war Daniels was appointed as an 

assistant professor of chemistry at the University of Wisconsin – Madison (Alberty, 1994).  He 

was tasked with teaching physical chemistry to undergraduates and graduates and developing 

and implementing a course to teach calculus to chemists.  

These early career experiences inspired Daniels to be a leader in revising the preparation of 

chemists in the United States. In particular there are two paradigm changing events and a series 

of articles published in the Journal of Chemical Education that are illuminating (Daniels, 1929; 

Daniels, 1958; Daniels 1931).  First, he published “Mathematical Preparation for Physical 

Chemistry in 1928 (Daniels, 1958; Daniels, 1928).  Second, in the spring of 1931, he organized a 

symposium on “The Teaching of Physical Chemistry” during the American Chemical Society 

meeting, which attracted an audience of 600 chemists (Daniels, 1931).  He was the leader in 

chemistry that sought to change training to include calculus noting “Calculus is absolutely 

essential” and  “Partial differentiation is the backbone of thermodynamical treatment . . . (and) 

The physical significance of partial differentiation is the important thing for the student to 

master” (Daniels, 1931, p. 257).  One statement he made in his introductory remarks leaves little 

doubt as to the fear of being cut-off from world class science: “Somehow our chemists must be 

better trained in mathematics or we shall be completely outclassed by our chemist friends in 

Europe” (Daniels, 1931, p. 257). 

In 1936, the American Chemical Society (ACS) formed the committee which is now known as 

the Committee on Professional Training to carefully consider the appropriate training for 

chemists at the baccalaureate, masters, and doctoral levels and to consider the accrediting of 
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schools (Billings, 1950). From 1936 to 1939 the committee worked with the chemistry 

community to generate objective standards of training for chemists at the undergraduate and 

graduate levels.  In 1939, the first set of standards was proposed for the bachelor’s degree and 

two years of mathematics course work including one year of differential and integral calculus 

was required.  Across the decades the ACS has consistently required calculus as part of its ACS 

certified degree program.  In 2023, three semesters of calculus are required and many students go 

on to take linear algebra and differential equations (2023 ACS Guidelines for Undergraduate 

chemistry Programs: Approved, n.d.).  

Where are calculus and calculus concepts used in undergraduate chemistry? 

Chemistry is fortunate as a field that a group of scholars have been engaged for more than 10 

years with the American Chemical Society Examinations Institute developing what are known as 

the Anchoring Concepts Content Maps (ACCMs) in chemistry which covers general chemistry, 

organic chemistry, inorganic chemistry, and physical chemistry (Murphy, et al., 2012; Holme & 

Murphy, 2012; Raker et al., 2013; Holme, Luxford, & Murphy, 2015; Marek et al., 2018; Holme 

et al., 2018; Holme et al., 2020a, Holme et al., 2020b).  The Biochemistry ACCM was delayed 

due to COVID and should appear in 2023.   These content maps are anchored to the ten big ideas 

in chemistry20 and the ACCMs were created and validated through a process of engagement with 

the chemistry community.   

Although originally created to help the ACS Exams institute align its examination items to the 

ten big ideas and to serve as a resource to departments engaged in assessment efforts, for the 

purposes of this conference the ACCMs can be used to identify where calculus is used in the 

curriculum and what calculus concepts are applied to problems in chemistry.    

Table 3 lists each chemistry area ACCM and the big idea and enduring ideas in the curriculum 

where calculus is used.  One of the anchoring concepts based upon the 10 big ideas is “kinetics” 

which is a study of rates in chemistry (the rates of chemical reactions) (American Chemical 

Society SOCED Report, 2005). The mathematical models used to describe rates of reactions are 

derived by integrating the rate equation that represents the way concentrations of reactants 

change with time.  However, often in lower division courses (the first two years of university) 

the model is presented and used, but the derivation of the model may not be explicitly shown and 

may not be an assessed learning outcome. Thus, although Kinetics is listed for general, organic, 

and inorganic chemistry in Table 3, the use of calculus to obtain the integrated rate law is 

dependent upon the instructor. 

Based upon this analysis, kinetics or rates of reactions is the only big idea where calculus is used 

in the lower division curriculum (first two years).  In upper division course work in analytical 

chemistry and especially physical chemistry, calculus is used more frequently to describe, model, 

and elucidate chemical phenomena embodied in the ten big ideas. 

To further understand the use of calculus in undergraduate chemistry it may be helpful to also 

note where the results of mathematical ideas are used to help students learn about a big idea, but 

the pure mathematics is not explored. For example, bonding is a fundamental concept and big 

idea where atoms interact via electrostatic forces to form chemical bonds.  Bonding can be 

modeled mathematically using calculus and higher-level mathematics, and the results are often 

displayed graphically.  In lower division coursework such as general chemistry and organic 
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chemistry the focus is on gaining chemical insights from the graphical representations, rather 

than the mathematical details. 

Table 3:  Content areas by course work topic where calculus is used.  The right-hand column notes 

the anchoring concept, which is one of the ten big ideas in chemistry, an enduring idea in italics, 

and then a sub-disciplinary articulation in some cases. 

ACCM area  Anchoring concept, enduring ideas, or (sub-disciplinary 

articulation) that use calculus. 

General Chemistry (Holme & 

Muprhy, 2012), Organic 

Chemistry (Raker et al., 2013), 

and Inorganic Chemistry 

(Marek et al., 2018) 

Kinetics: Chemical change can be measured as a function of 

time; Empirically, experimentally, derived rate laws 

summarize the dependence of reaction rates on 

concentrations of reactants and temperatures 

Inorganic Chemistry (Marek et 

al., 2018) 

Bonding: A theoretical construct that describes chemical 

bonding utilizes the construction of molecular orbitals for 

the bond based on overlap of atomic orbitals on the 

constituent atoms; (Molecular orbitals are formed by 

overlapping atomic orbitals that have the same symmetry) 

Analytical Chemistry (Holme 

et al., 2020b) 

Kinetics: Chemical change can be measured as a function of 

time; Empirically (experimentally), derived rate laws 

summarize the dependence of reaction rates on 

concentrations of reactants and temperatures 

Equilibrium: Thermodynamics provides mathematical tools 

to understand equilibrium quantitatively; (Equilibrium 

constants are temperature dependent and the variation can be 

modeled using the van’t Hoff equation) 

Physical Chemistry (Holme et 

al., 2018) 

Atoms: Electrons play the key role for atoms to bond with 

other atoms: Atomic wavefunctions describe an atom’s 

electrons and these functions include quantum numbers 

Bonding: Because protons and electrons are charged all 

models of bonding are based on electrostatic forces; 

Because chemical bonds arise from sharing of negatively 

charged electrons between positively charged nuclei, the 

overall electrostatic interaction is attractive; A theoretical 

construct that describes chemical bonding utilizes the 

construction of molecular orbitals for the bond based on 

overlap of atomic orbitals on the constituent atoms; 

Different types of approximations, including variational 
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theory or perturbation theory, may be used to solve quantum 

mechanical problems 

Structure/Function: Electronic, vibrational, and rotational 

motions are associated with energy levels and transitions 

between levels provide important insight into molecular 

behaviors; Rotational and vibrational spectroscopy are 

sensitive to the atoms’ nuclear mass via the I (moment of 

inertia, and B (rotational constant) or reduced mass; 

Theoretical models are capable of providing detailed 

structures for whole molecules based in energy minimization 

methods. 

Intermolecular Forces: For condensed phases that are not 

structures of extended chemical bonds the physical 

properties of the state are strongly influenced by the nature 

of the intermolecular forces (The Clausius-Clapeyron 

equation describes phase equilibrium in terms of 

macroscopic variables.) 

Reactions: In chemical changes, matter is conserved and this 

is the basis behind the ability to represent chemical change 

via a balanced chemical equation (The extent of a reaction, 

xi, can be defined in terms of differential changes in amounts 

of substances present.) 

Energy and Thermodynamics: Thermodynamics provides a 

detailed capacity to understand energy change at the 

macroscopic level. 

Kinetics: chemical change occurs over a wide range of time 

scales; Empirically derived rate laws summarize the 

dependence of reaction rates on concentration of reactants 

and temperature; Most chemical reactions take place by a 

series of more elementary reactions, called the reaction 

mechanism; An elementary reaction requires that the 

reactants collide (interact) and have both enough energy and 

appropriate orientation of colliding particles for the reaction 

to occur.   

Equilibrium: Thermodynamics provides mathematical tools 

to understand equilibrium quantitatively 

Experiments, measurement, and data: Chemistry is generally 

advanced via empirical observation 



 8 

Visualization; Many theoretical models are constructed at 

the particulate level, while many observations are made at 

the macroscopic level. (Quantum mechanical models include 

the premise by which probabilities lead to experimental 

observations). (Mathematical relationships are useful in 

deriving equations that define various models). Macroscopic 

properties result from large numbers of particles, so 

statistical methods provide a useful model for understanding 

the connections between these levels; Quantitative reasoning 

within chemistry is often visualized and interpreted 

graphically 

 

Examples of how calculus is used in the undergraduate curriculum 

To understand how calculus is used in the undergraduate chemistry curriculum a deeper dive into 

the discipline is required.  In the text that follows symbols that are commonly used in the 

discipline appear.  Box 1 serves as a guide to these symbols and may aid in the readability of the 

following sections. The hope is to make the text less like alphabet soup. 

 

Box 1:  Terms 

A = Helmholtz Energy  G = Gibbs Energy  H = Enthalpy 

K = rate constant   K = Equilibrium constant P = Pressure 

R = Gas constant   T = Temperature  U = Energy 

V = Volume 

Based upon Table 3, the big idea of Kinetics or rates of chemical reactions is a part of every 

course throughout the curriculum.  Here differentials are used to express the rate equation (called 

a rate law in chemistry) showing the relationship between the rate and the concentration of 

reactants.  When the equation is integrated the relationship between concentration and time is 

revealed.  This integrated rate law is used to determine the amount of reactant present after a 

certain time t.   

Relationship between reactant concentration and time.   

Consider the reaction where a reactant B goes to products.  A chemist would denote this as:   

B → products 

The rate of the reaction would be expressed as the equation below where [B] is the concentration 

of reactant B and k is the rate constant that is independent of time. The value of x is known as the 

order of the reaction.   

Rate = k[B]x 

The three most common cases discussed in coursework are zero, first, and second order 

reactions.  Because reactants are being consumed in a chemical reaction, the rate of change in 
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concentration of a reactant with time is a negative quantity and a negative sign is added to the 

rate equation.  The three common cases are shown below with the associated rate equation, the 

integration, and the final integrated rate equation in a y = mx + b format. 

        Zero         First   Second 

 

Rate equation    
−∆[𝐵]

∆𝑡
= 𝑘  

−∆[𝐵]

∆𝑡
= 𝑘[𝐵]   

−∆[𝐵]

∆𝑡
= 𝑘[𝐵]2 

Integration  ∫ 𝑑[𝐵] = ∫ −𝑘 𝑑𝑡 ∫
𝑑[𝐵]

[𝐵]
=  ∫ −𝑘 𝑑𝑡  ∫

𝑑[𝐵]

[𝐵]2 =  ∫ −𝑘 𝑑𝑡 

Integrated rate equation 

   [B] = -kt +[B]0  ln[B] = -kt + ln[B]0  
1

[𝐵]
= 𝑘𝑡 + 

1

[𝐵]0
 

 

In each equation [B]0 is in the initial concentration of reactant B at time t = 0, and [B] is the 

concentration of reactant B at time t.  Thus, these equations allow for the calculation of reactant 

left after the reaction has proceed for some time t if the reaction order is known.  The order is an 

experimentally determined quantity and it is not given by the balanced overall chemical 

equation.  The analysis of experimental data is guided by these integrated rate laws and it is a 

common undergraduate experiment to determine the order of a reaction.   

Differentials and integration to reveal relationships 

Table 3 demonstrates that calculus is used in all ten big ideas in the physical chemistry 

curriculum.  There are cases in which measured experimental variables, such as temperature, are 

related to constants or properties of substances are important in describing the system and or its 

behavior.  Table 4 shows three equations that are used in a first semester physical chemistry 

course.  The equations are often derived and students may be assessed on the derivation and or 

the integrated equations may be used to analyze experimental data to make claims about 

chemical substances or systems.  In all cases the students must blend their understanding of 

chemistry and the quantities under consideration with the mathematics from calculus that they 

wish to use.   

Table 4: Examples of three equations from three different big ideas used in a first semester 

chemistry course.  They are shown in the differential form and integrated form and a brief 

explanation of their importance is given 

Equation name 

and Big Idea area 

Differential form Integrated form Importance 

Van’t Hoff 

equation 

(equilibrium in 

both p. chem and 

analytical) 

𝑑 𝑙𝑛𝐾

𝑑(
1
𝑇)

=  −
∆𝑟𝐻⊖

𝑅
 

ln K2 – ln K1 = 

 −
∆𝑟𝐻⊖

𝑅
(

1

𝑇2
− 

1

𝑇1
) 

Assuming ∆𝑟𝐻⊖ 

doesn’t vary over 

the change in T, 

one can predict K, 

equilibrium 

constants from 

known 
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thermodynamic 

data. 

Clausius-

Clapeyron 

(Intermolecular 

forces) 

 

𝑑 𝑙𝑛𝑃

𝑑𝑇
=  −

∆𝐻𝑣𝑎𝑝
⊖

𝑅𝑇2
 

ln P2 – ln P1 = 

 −
∆𝐻𝑣𝑎𝑝

⊖

𝑅
(

1

𝑇2
− 

1

𝑇1
) 

Relates 

temperature 

dependence of 

vapor pressure to 

the heat of 

vaporization 

Gibbs-Helmholtz 

(Energy and 

Thermodynamics)  
 (

𝜕 (
∆𝐺⊖

𝑇 )

𝜕𝑇
)

𝑃

=  −
Δ𝐻⊖

𝑇2
 

∆𝐺⊖(𝑇2)

𝑇2
 – 

∆𝐺⊖(𝑇1)

𝑇1
 

=   −∆𝐻⊖(
1

𝑇2
− 

1

𝑇1
) 

Allows for 

calculation of 

Gibbs energy at T2 

given knowledge 

of Gibbs energy at  

T1. 

 

Partial derivatives to understand chemical systems 

Chemistry often involves the use of functions of two variables or more.  For example, the 

pressure of a gas is a function of temperature and volume, thus P = P(T, V).  If the temperature 

were to be held constant then P becomes a function of V only.  Chemists represent that partial 

derivative with the following notation: 

(
𝜕𝑃

𝜕𝑉
)
T 

In chemistry the independent variable that is held constant in the differentiation (and in an 

experiment if there is a connection to experiment) is subscripted.  If both the temperature and 

volume change, then the total change in pressure is the sum of the change due to the temperature 

and the change due to the volume as shown in the equation below.  This equation is called a total 

differential.  

𝑑𝑃 = (
𝜕𝑃

𝜕𝑇
)𝑉𝑑𝑇 + (

𝜕𝑃

𝜕𝑉
)𝑇𝑑𝑉  

Partial derivatives are used ubiquitously in the energy and thermodynamics big idea and many of 

these relationships also appear in physics coursework.  In chemistry the fundamental equations 

of thermodynamics as shown in Table 5 relate mechanical, fundamental, and composite 

properties.  These equations are exact differentials and thus the cross derivatives are equal.  

These cross derivatives are known as the Maxwell relations.   

To derive the Maxwell relations requires that a student have knowledge of differentials and 

partial derivatives.  To understand their importance in chemistry (or physics) a student is 

required to blend his or her knowledge between mathematics and chemistry.  In the laboratory it 

is possible to control T, P, and or V depending upon the experimental design.  It is not possible 

to control entropy, S, through a device or instrument – there is no such thing as an entropy meter.  

The Maxwell relations related to the Helmholtz energy and Gibbs energy allow for a description 

of how a system’s entropy varies with volume at constant temperature or how the system’s 

entropy varies with pressure at constant temperature through measurements of P, T, and V. If one 
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can measure and describe how a system’s pressure varies with temperature at constant volume, 

then one can make claims about how the system’s entropy varies with volume at constant 

temperature.  Similarly, if one can measure how volume varies with temperature at constant 

pressure, then claims about how the system’s entropy varies with pressure at constant 

temperature can be made. Thus, the mathematics provides insight into chemical systems in ways 

that are not directly accessible through experiment. 

Table 5: The fundamental equations of thermodynamics relating mechanical variables P and V , 

fundamental variables T, S, and U which are defined by the laws of thermodynamics, and 

composite variables H, A, and G.  From these equations the Maxwell relations can be determined 

Name (function) Fundamental equations of 

thermodynamics 

Maxwell relations 

U(S,V) = internal energy dU = T dS – P dV 
(
𝜕𝑇

𝜕𝑉
)𝑆 =  −(

𝜕𝑃

𝜕𝑆
)𝑉 

 

H(S,P) = enthalpy dH = T dS + V dP 
(
𝜕𝑇

𝜕𝑃
)𝑆 =  (

𝜕𝑉

𝜕𝑆
)𝑝 

 

A(T,V) = Helmholtz energy dA = -S dT – P dV 
(

𝜕𝑆

𝜕𝑉
)𝑇 =  (

𝜕𝑃

𝜕𝑇
)𝑉 

 

G(T,P) = Gibbs energy dG = -S dT + V dP 
−(

𝜕𝑆

𝜕𝑃
)𝑇 =  (

𝜕𝑉

𝜕𝑇
)𝑃 

 

 

Infinitesimals 

Recently at the 2023 RUME conference the Math-Science working group held a discussion of 

the use of calculus in the undergraduate curriculum, with a specific question about the role that 

limits and infinitesimals play and how they were used in the curriculum.  Infinitesimals are used 

in the energy and thermodynamics big idea to describe pressure-volume work.  They are useful 

in describing an idealized process known as a “reversible” process which leads to the maximum 

work being produced in an expansion.  A reversible process is defined as a process which can be 

reversed thus restoring the system to the exact same state as before the process took place.  Every 

step in the process is at equilibrium and the driving force is only the infinitesimally larger than 

the opposing force.   

The example frequently given is the expansion (or compression) of an ideal gas in a frictionless 

piston where maximum work is calculated.  Students often explore expansions which take place 

in fewer steps, such as one, two or three, then compare the work produced by the system in a 

reversible expansion as shown in Figure 2.  For a reversible expansion the work produced is the 

area under the PV curve, thus students arrive at integration as the mathematical method to 

calculate the work.  Stated differently, if the opposing pressure is constant as the volume is 
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increased infinitesimally, then the total work produced is the integral between the initial and final 

volume. 

Reversible work for an expansion or compression of an ideal gas is: 

 

𝑤 =  − ∫ 𝑃𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔  𝑑𝑉
𝑉2

𝑉1

=  − ∫
𝑛𝑅𝑇

𝑉
 𝑑𝑉 =  −𝑛𝑅𝑇 𝑙𝑛

𝑉2

𝑉1

𝑉2

𝑉1

  

 

 

A)                  B)     

Figure 2:  A) Work produced in orange from a single step, two step, three step, and reversible 

expansion (Lower, n.d.)  B)  Multi-step expansion demonstrating as the change in volume becomes 

infinitely small the representation approaches maximum work, the area under the curve  (Perverati, 

n.d.) 

Descriptions of bonds between atoms, molecular orbitals, and symmetry 

In inorganic chemistry and physical chemistry bonding is explored through various models 

(Marek et al., 2018; Holme et al., 2018). Molecular orbital theory is introduced at a basic level 

(non-mathematical) to the students perhaps in general chemistry, but more often in inorganic 
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chemistry and physical chemistry.  Molecular orbitals arise from linear combinations of atomic 

orbitals which are mathematical models.  The calculus used involves integration and the results 

are often displayed as visually.  Symmetry is also invoked as a condition for bonding as only 

orbitals of the correct symmetry may be used, and the results are represented visually.   The 

diagram in Figure 3 shows an energy level diagram of the atomic orbitals on two hydrogen atoms 

(Halpern, n.d.).  There are two molecular orbitals formed a bonding (lower energy) and anti-

bonding (higher energy) molecular orbital. The symmetry aspects are encoded as “+” and “-“ 

symbols in the upper portion of Figure 3 and by two different colors in the anti-bonding *
1s 

molecular orbital. 

 

 

 

Figure 3:  Molecular orbital energy- level diagram for H2.  The electrons in the 1s orbitals of each 

hydrogen atom fill the bonding 1s molecular orbital, denoted as s1s
 (Halpern, n.d.) 

Experiments, discrete chunks, and variation 

     Laboratory coursework in physics, chemistry, biology, and engineering is a common feature 

of university programs.  In these courses students spend (in the US) 1 to 3 hours in a laboratory 

classroom conducting experiments and analyzing data (although it is conceded that some of these 

experiments could be simulations completed on a computer). In a chemistry laboratory setting, 

students investigate the real world by collecting measurements and analyzing them. During the 

analysis they often make use of mathematical models which leverages a known relationship 

between quantities.  Thus the theory, embodied in a mathematical relationship, matches the 

experiment. While the mathematical relationship is a function, which mathematicians may think 

of varying smoothly, students come to know this variation in a discrete or “chunky” manner, 

through the measurements obtained in the laboratory.   

To give an example of a type of experiment, the data, and the reasoning, consider an experiment 

commonly carried out in a general chemistry course where the goals are to 1) construct a 

“calibration curve” by measuring the absorbance of a set of solutions of known concentration, 

and 2) use it to find the concentration of an unknown sample.   
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It is known that some substances absorb visible light in such a way that they obey Beer’s Law 

where the absorbance of light is related to the concentration of the solution.  The equation for 

Beer’s Law shown below. 

A = lc 

A = Absorbance 

 = molar absorptivity, a constant 

l =  optical path length 

c = concentration of species interacting with (attenuating) the light 

In the laboratory the students use an instrument called a UV-Vis spectrophotometer to measure 

the absorbance of a set of solutions.  In the experiment the students would be tasked with 

creating 5 samples of decreasing concentration by serial dilution. The experiment then involves 

measuring the absorbance at one specific wavelength in the visible region of the electromagnetic 

spectrum where the material exhibits the strongest absorbance.  The usual method is to measure 

the absorbance of the “blank”, a solution with none of the absorbing substance in it, then the 

measure the other solutions which contain a known amount of the absorbing material.   

For this experiment, the solutions that the students made are shown in Figure 4 and are solutions 

2-6.  Solution 1 contains only water (the solvent) and none of the absorbing material.  The 

absorbance and concentration data for each solution is shown in Table 6 and the graph of the 

data with the corresponding solution is shown in Figure 4 (Harvey, n.d.).   

Table 6:  Sample student data for absorbance experiment.  The concentration values are calculated 

via a serial dilution.  The absorbance values are readings from the spectrophotometer 

Concentration (M) Absorbance 

0 0 

0.0015 0.045 

0.0031 0.093 

0.0047 0.142 

0.0064 0.192 

0.0079 0.240 
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Figure 4:  The blank and five sample solutions aligned with their data points on a graph generated 

from the data in Table 6 (Harvey, n.d.) 

The graph in Figure 4 and an associated trendline (y = 29.368x + 0.0012) could be used to 

determine the concentration of an unknown.  For example, imagine that this blue color comes 

from a dye called Blue 1, which can be used to make beverage drinks (it is in a product called 

Kool-Aid in the US).  Given a sample of blue or purple Kool-Aid, one could measure the 

absorbance of the sample and determine the concentration of the Blue 1 dye in the Kool-Aid 

sample.   

The point of this example and its connection to the conference is to highlight that 

mathematicians and scientists may view variation, or covariation, differently.  There are 

thousands of papers and book chapters pertaining to covariation, but here two will be highlighted 

as perhaps being useful to inspire conversations at the conference. 

In “Chunky and smooth images of change” by Castillo-Garsow, Johnson, and Moore (2013), 

they note that research on variation suggests “how students conceptualize variation influences 

the mathematics that they construct.”  Based upon their research the authors note that in the 

chunky version of change discrete points exist which produces chunky conceptualizations of 

variation, and this is a less powerful conceptualization than a smooth image of change.   

Thompson and Carlson (2017) explore covariation as a foundational principle in mathematics.  In 

this chapter, they proposed a revised covariational reasoning framework as a lens for future 

research (see Table 13.3) and a table the describes that describes their current view, in 2017, of 

the major levels of covariational reasoning (see Table 13.4).  Both tables serve as a lens through 

which mathematicians consider the conceptualization of covariation. 

The research focusing on covariational reasoning supports the conclusion that mathematicians 

favor smooth conceptions of covariation and variation over chunky.  The desire is for students to 

build conceptions that lead to smooth continuous variation and thus can be linked to a 

conceptualization of functions.  This is problematic for undergraduate students in the sciences 

and engineering where data is acquired in a discrete, chunky fashion (Dray et al., 2019).  Every 

experiment has a context and the measurements obtained are attributes of the system under 

investigation and very often these measurements have units.   
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It is seldom the case that chemistry instructors describe measurements in laboratory as a set of 

values from independent and dependent variables that are changing smoothly.  One may ask why 

and one simple answer is that often the goal is to measure and or identify a specific value that 

physically describes the chemical system (the concentration of the unknown or the order of a 

chemical reaction). Additionally, the independent variables are often values of physical attributes 

of the sample which are known, such as a concentration.  Smooth variation of the variables is not 

part of the roots or foundational of understanding the chemical system that is under investigation.   

Thus, beyond the exploration of where and how calculus is used in undergraduate chemistry, 

perhaps at this conference there may be room for conversations about the nature of experiments 

in the sciences and engineering and the kind of covariational thinking it supports (more chunky) 

and the smooth thinking favored by mathematicians.   
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Abstract. The teaching of mathematics for economics (ME) differs significantly from the teaching 
of mathematics in mathematics study programs, especially in the area of calculus. The reasons for 
this I will discuss first. By means of examples, I will work out by which features ME can be 
characterized. Among the features are the emphasis on mathematical modeling, the intensive use of 
simplifications, heuristics and applications. Finally, I will formulate theses on the opportunities and 
risks of using these features of ME. This can serve as a basis for further discussions among teachers 
and researchers from economics, mathematics and didactics. 

Note. This is a short version of a working paper (Voßkamp, 2023a), which is available here (soon): 
https://www.uni-kassel.de/go/vosskamp. The numbering of models, definitions etc. in this short 
version of the paper corresponds to the numbering in the working paper (Voßkamp, 2023a). 

Prologue 
Mathematical methods have played an important role in economic research for about 70 years. The 
beginning of the mathematization of economics can be marked with the fundamental work of - 
amongst others - P. A. Samuelson, K. Arrow and G. Debreu and in the 1940s and 1950s (e.g. 
Samuelson, 1947; Arrow & Debreu, 1954; Hodgson, 2012). In particular, the increasing importance 
of empirical approaches and analysis due to the availability of data, hardware and software also 
increases the importance of mathematics (including statistics) in economics (cf. Stigler et al. 1995). 
These developments are also evident in the field of business administration. Since mathematics in 
economics is more important than in business administration, this article will mainly focus on 
mathematics for economists. 

Mathematics is not only taught in mathematics programs (bachelor, master, teacher-training 
programs). Mathematics and thus mathematics modules are present in many study programs, 
including programs in business administration and economics. The amount of mathematics 
provided in business administration and economics programs is considerable (cf. e.g. Voßkamp, 
2017; Allgood et al., 2015). However, there has been limited educational research on mathematics 
in economics and business administration. Moreover, teachers of mathematics for economics are 
only minimally concerned with higher education didactic concepts of mathematics. The reasons 
here are manifold. 

The focus of this paper is on the important topic of differential and integral calculus in the context 
of economics (calculus in economics; CE), although this field cannot be separated from analysis in 
economics (AE) and from mathematics for economics (ME). This article clarifies important 
framework conditions, which significantly influence ME and make clear that core mathematics 
differs from ME. To this end, I will use examples to highlight some important features that 
characterize ME. However, it is problematic that ME cannot be clearly defined or demarcated 
because there are different views on the part of economists (and thus also of teachers of ME). 
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The structure of the article is as follows: After the introduction, some remarks on the background of 
ME follow - including a brief overview on the topics of ME, AE and CE. Afterwards I will deal 
with some important features of ME. Examples from ME are used to illustrate the main features. A 
short epilogue concludes the article. 

Background 
Business administration and economics 

Two scientific disciplines deal with economic phenomena. Business administration focuses on 
single firms, while economics looks at (a part of) a whole economy. In the English-speaking world, 
this distinction is often dispensed with, so that one simply speaks of economics. This preliminary 
remark is important because, in these two disciplines, the role of mathematics is very different. In 
economics there are much more quantitative and qualitative approaches with mathematical methods 
than in business administration. 

Fundamental problems 

Teaching ME differs significantly from teaching mathematics in core mathematics programs 
(bachelor and master programs, teacher-training programs). Many first-year students are surprised 
at the beginning of their studies that mathematics modules are compulsory in the context of 
business administration and economics study programs. This relates to the fact that students' 
intrinsic motivation is often weak, which is especially evident for students in business 
administration study programs.  

In addition, fundamental problems, among others, include the following: 

1. Students' transition from school to university is often problematic (cf. e.g. Laging & 
Voßkamp, 2017; Büchele & Feudel; 2023). 

2. First-year students show insufficient competencies in secondary mathematics (cf. e.g. 
Laging, Voßkamp, 2017; Büchele & Feudel; 2023). 

3. The consequences of the Corona Pandemic are dramatic (cf. e.g. Büchele et al., 2021). 

As a rule, extensive support services (e.g., pre-courses, bridging courses, open learning spaces) are 
provided in the introductory phase of studies. However, in many cases these are only used to a 
limited extent (cf. e.g. Laging & Voßkamp, 2016; Büchele et al., 2022). In addition, the 
mathematics modules have only a small weight in determining the overall grade. Therefore, many 
students only aim to achieve a grade 4, which in Germany typically implies only just passing an 
exam. Finally, the use of mathematical methods in economics is viewed critically by a small 
minority (cf. e.g. Gräbner & Strunk, 2020). These positions are often used by students to 
fundamentally question the importance of mathematics in economics programs. 

Mathematics vs calculus 

While mathematics courses (bachelor and master programs, teacher-training programs) include 
several modules in analysis / calculus along with many other modules, students of economics 
usually have to take only a few compulsory modules (one to three) in ME (cf. Voßkamp, 2017). 



 

 

Within the framework of these modules, topics from analysis (limits of sequences and functions, 
continuity, differential calculus and integral calculus) are of great importance. In addition, topics 
from linear algebra and other sub-disciplines of mathematics are usually covered. Thus, analysis - 
and therefore calculus - is taught in a close context with other mathematical sub-disciplines. 

Teaching ME 

The design of a module within a degree program depends on given structures (e.g. examination 
regulations). However, the design of a module also largely depends on (amongst others) the 
qualifications, the affiliation, the professional status and the responsibilities of teachers. (cf. 
Voßkamp, 2017). 

Content 

The following list of topics is an example for a module ME. This is (more or less) the structure of 
the lecture ME, which I offer at the University of Kassel: 

1. Basics: Logic, modeling, sets, Cartesian products, relations, functions 

2. Analysis I: Sequences, series, financial mathematics, functions, differential calculus ( 1n = ) 

3. Analysis II: Functions, differential calculus (incl. constrained optimization) (   1n > )  

4. Analysis III: Integration ( 1n = ,   1n > ), difference and differential equations 

5. Linear Algebra 

In the context of ME the topics of analysis play an important role, which are also fundamental in 
(core) analysis courses on functions with one variable (case 1n = ) or on functions with several 
variables (case   1n > ): Limits (sequences, functions), continuous functions, differentiable 
functions, integrals. 

Since functions with several variables already play an important role in the basic economics 
modules of the first semester (especially in the module microeconomics), analysis for functions 
with several variables is of great importance in the context of ME, which is taught in the first 
semester. 

In detail, however, there are topics which - relative to (core) calculus - have a lesser or greater 
importance in CE. In the case 1n =  from an economics perspective, the following topics are 
important among others: Differentials, growth rates, elasticities. In the case   1n > , partial and total 
differentials, partial elasticities, constrained optimization (in particular: Lagrange method). The 
selection is driven by the economic applications. 

Features 
Due to the heterogeneity of the teachers, the modules ME are also very heterogeneous. This can 
also be seen from the fact that there are probably more than 200 textbooks on ME in the German 
language area available (cf. Voßkamp, 2023b). Even if one considers only the textbooks that are 
used often in German-speaking countries (among others Sydsaeter et al., 2021; Chiang & 
Wrainwright, 2005; Merz & Wüthrich, 2011; Simon & Blume, 1994) the textbooks are very 
heterogeneous in several respects. Nevertheless, some features can be mentioned which are - more 



 

 

or less - characteristic for ME. In the following, I will address some features, where strong 
differences between core calculus and CE are present. The list of features is, however, quite 
subjective. 

Modelling 

Every science is about gaining new knowledge. Thus, it is about clarifying the truth of statements. 
This is no different in economics. However, economic phenomena and thus economic questions are 
usually complex and complicated, so that the extraction of knowledge is also usually difficult. 
Against this background, mathematical modeling has a very high value in economics. Starting point 
for building an economic model is an economic question. We understand a model as a set of 
assumptions (definitions and hypotheses). Based on the assumptions, theorems can be formulated 
which have to be proved. Thus, mathematical logic and mathematical modeling are closely 
connected. The triad of mathematics definition-theorem-proof “mutates" to model-theorem-proof. 
For illustration, I will present a first example drawn from macroeconomics. 

The starting point is the following statement S , which economist and politicians use very often in 
discussions of economic policy:  

S = "If private investment increases, then gross domestic product (GDP) increases." 

The goal is to proof the truth of statement S . Therefore, I use a simple multiplier model (cf. 
Blanchard, 2020). 

 



 

 

The mathematical model is given by: 

• three equations: Y C I= + , C C cY= + , I I=  

• three variables: ,  ,  Y C I  

• three parameters: 0 1c< < , 0C > , 0I >  

True statements can be derived from the assumptions of the model. Two examples: 

 
The theorems must then be proved: 

 
Therefore, based on the model, statement S  is true. However, a critical analysis of the result must 
take place. On the one hand, the model (and thus the model assumptions) has to be critically 
examined. On the other hand, based on data and the use of econometric (and other) methods, the 
results of the model must be tested. Here, good reasons exist to use sophisticated models to clarify 
the issue (cf., e.g., Blanchard, 2020). 

Simplifications 

In ME, simplifications are often used. There are two reasons for this: 



 

 

1. Within the framework of a module ME, calculus cannot be treated in full breadth and depth. 
To avoid facts becoming too complicated and / or too complex, assumptions are often made 
within the framework of ME that lead to simplifications. 

2. However, simplifications are often reasonable and understandable for economic reasons. 

Simplifications are regularly made in AE, for example, only continuous functions are considered, so 
there for instance no difference between Riemann and Leibniz integrals. Simplifications are 
fundamentally problematic because they prevent statements that are more general. If simplified 
assumptions are made, this must be disclosed and discussed. 

Heuristics 

Heuristics are to be distinguished from simplifications. A heuristic is a method to get valuable 
results quickly (cf. Gigerenzer et al., 2011). The problem of a heuristic is that it does not always 
lead to perfect results. Heuristics can take the form of definitions, theorems, and proofs. Example: 

 

 

 
This example makes clear which problems can arise when using a heuristic definition. For example, 
the Heuristic definition 3 is problematic for 0   0x = in the case of the functions 

( )f x x= and 3( )f x x= . Heuristic definition 4 uses the term "vertices" which is not defined. 
Moreover, in the first case we look at the point 0  x . In the second case, the focus is on the 
derivative as a whole. However, the heuristic definitions could be modified to capture both, the 
derivative at 0  x  and the derivative function. 

In general, for didactic reasons, the exact version should always be given as well, even if it is not 
used further in the framework. The comparison makes clear that there are obviously cases where the 
heuristic version cannot be applied. 



 

 

Applications / examples 

In ME / AE / CE, economic examples are used intensively and these are often simple applications 
from microeconomics and macroeconomics. Two reasons play a role:  

1. Economic examples are often used to motivate methods in ME / AE / CE. 

2. Economic examples are also used to illustrate the advantageousness of mathematical 
methods and the mathematical in answering economic questions. 

In the next section this is illustrated by several examples. 

Diagrams / graphical representations 

In ME / AE / CE, we work intensively with diagrams. The background is that both in economic 
textbooks as well as in economic research papers, diagrams are used intensively. Very often it is 
about the representation in 2R  of the graphs of (two) functions of a variable. The most important 
example is probably the price-quantity diagram, in which the inverse demand curve 

( )1  ; , , mp p x a a= …  and the inverse supply function ( )1  ; , , np p x b b= …  are represented (see 
Figure 1). p is used for price, x for quantity. 1 1, , , , ,m na a b b… …  represent location parameters which 
we will disregard in the following. 

A simple demand function ( )x x p=  establishes a relationship between demand x  and p . In most 
cases, the higher the price p , the lower the demand x . A simple supply function ( )x x p=  
establishes a relationship between supply x  and p . In most cases, the higher the price p , the 
higher the supply x . Thus, strictly monotone functions are assumed so that inverse functions exist. 

A side note: We have used only the variables x  and p  here for good reasons. If a very exact 
notation is chosen, we write (with d  for demand and s  for supply): ( )d d dp p x=  and ( )s s sp p x= . 

For the price-quantity diagram (see Figure 1), there are no problems, because quantities are plotted 
on the abscissa and prices on the ordinate. Moreover, the focus is on market equilibria * *( , )x p . In a 
market equilibrium * *( , )x p  we have d sx x=  and d sp p=  

 
Figure 1: Demand, supply, consumer and producer surplus, welfare  

In this example, the slopes of the functions play an important role. In addition, important quantities 
such as consumer surplus, producer surplus and welfare can be represented by surface areas and 



 

 

thus by definite integrals. Models with more than two endogenous variables are also often 
represented with diagrams. For this purpose, so-called reduced models are considered, which then 
contain only two (independent) variables (in addition to parameters). Examples: IS-LM model, AD-
AS model (cf. Blanchard, 2021). 

Measurement 

For the understanding of economic matters, it is (similar to physics) very often helpful to specify 
the units in which variables are measured. This is especially true in the context of marginal 
variables that arise by differentiation. 

As an example, the concept of marginal cost will be discussed (cf. Feudel, 2020; Feudel & Biehler, 
2022). Assume that there is a functional relationship between cost C  and the quantity x  produced. 
Cost C  is measured in monetary units [$], the quantity produced x  in units of quantity [pieces]. 

Consequently, marginal cost ( ) /C x dC dx′ =  is measured in monetary units per unit of quantity: 
[$]/[pieces]. For details, consider the difference quotient or differential quotient: 

 
Marginal cost is often defined as the cost of an additional marginal unit of quantity produced. This 
formulation suggests that marginal cost is measured in monetary units [$]. However, this is 
incorrect. Marginal costs ultimately indicate the average cost of an additional (marginal) unit of 
quantity. They are measured as in monetary units per unit of quantity: [$]/[pieces]. This information 
is also important, for example, for understanding elasticities and growth rates. 

Examples: Some lessons from micro- and macroeconomics 
In this section, I will present four examples from CE that (usually) show some of the features 
presented in the previous section. In the long version of this paper, I present two further examples 
on constrained optimization and approximation (Voßkamp, 2023a). 

Elasticities: What is the impact of price on demand for a good? 

Economists usually assume that there is a functional relationship between the demand x  for a good 
(e.g. milk or cars) and the corresponding price p  (see previous subsection on diagrams / graphical 
representations). It is usually assumed that the corresponding demand function ( )x x p=  is 

differentiable any number of times. Popular demand functions are linear and iso-elastic demand 
functions: 



 

 

 
Using the derivative / ( )dx dp x p′= , we can determine the influence of the price p  on the demand 
x  (see Figure 2).  

 
Figure 2: Inverse demand functions 

While x  is measured in [pieces] and p  in [$/pieces] we have:  

For the two examples, we obtain: 

Thus, it is possible to calculate what change in demand can be expected if the price changes 
marginally. Approximately, a marginal price change might be 1 $. The change in quantity is 
calculated by 

However, this information is of very limited use when comparing quantity responses for different 
goods that have very different prices. In the case of milk, a 1 $ change in price will be dramatic; in 
the case of automobiles, it will not be noticeable. Therefore, in economic applications, elasticities 
are often considered, which put relative changes into perspective. In the concrete (initially discrete) 



 

 

case, it is asked what relative change in demand /x x∆  results when a relative price change /p p∆  
occurs. It is then calculated: 

For marginal price changes, we then define: 

 
Obviously, price elasticities are dimensionless. 

Elasticities and especially price elasticities are often used in economics because of the ease in which 
they can be interpreted. It holds (approximately): The price elasticity ; ( )x p pε  indicates the 
percentage change in demand when the price changes by 1 %. For example, if ; ( ) 2x p pε = − , then 

demand is reduced by approximately 2 % when the price increases by 1 %: 

 

 
Price elasticities are often estimated based on iso-elastic demand functions using regression models. 

 
Then, β  equals ; ( )x p pε . In Table 1, some price elasticities are presented. 



 

 

Table 1: Estimates of price elasticities (cf. Wilkinson (2005)) 

 
In general, elasticities are defined as follows: 

 
Differential calculus: What is the impact of a monopolist's price setting behavior on profit? 

If this question is asked, many answer ad hoc that a monopolist's profit will increase if the price for 
the good increases. However, this is only true under certain conditions. With the help of a simple 
model, the relationships can be examined. We use the following assumptions: 

The monopolist's profit ( )xΠ  is given by revenues ( )R x  minus cost ( )C x :  

 
Using the known necessary and sufficient conditions for a maximum, we obtain the profit-
maximum quantity  



 

 

To this profit-maximum quantity Mx  belongs the profit-maximum price  

Thus, it follows: 

 
Figure 3 represents the relationships in a graph. 

 
Figure 3: Pricing in a monopoly 

Moreover, *Mx x<  and *Mp p>  holds. This result shows arguments why a monopoly is - 
economically speaking - disadvantageous. 

Integral calculus: When is an exhaustible resource exhausted? 

This question can be answered again based on a simple model. 

 
 



 

 

Intuitively, it is usually expected that under these assumptions the resource will be exhausted, even 
if the rate r  is negative and thus consumption decreases. Nevertheless, is this conjecture correct? 

Assumption A.2 implies the following differential equation: ( ) / ( )r R t R t′=  The special solution 
leads to the following resource consumption function: 

The consumption up to a point of time T  is (assuming 0r ≠ ): 

In case 0r = , the resource consumption is constant 0R :  

Up to point of timeT , the resource consumption is ( )S T : 

 
T , the point of time at which the resource is exhausted, can be determined by solving the equation  

It follows ( 0r ≠ ): 

 
Thus, the resource will be exhausted at time T  when r  is positive. If 0r =  holds, then the resource 
will be exhausted at time 0 0/T B R= . In the case 0r < , obviously T  can be determined only if 

holds. What does this mean mathematically? The conjecture is that the resource will be available 
infinitely if the condition is not satisfied. To check this, consider the following integral (with 

0r < ): 



 

 

 
The result shows that the cumulative resource consumption over an unbounded period [0; [+∞  is not 
unbounded at all, but 0 /R r− . Thus, if this value is less than or equal to 0B , it follows: 

Then the resource is not depleted. We summarize the results: 

 
As before, the essential facts can be represented graphically (see Figure 4). 

 
Figure 4: Exhaustible resources 

A small case study: In 2019, there were 245 billion tons of crude oil reserves worldwide. 
Consumption in 2019 was 4.46 billion tons (Source: Statista Research Department, 2023). If 
consumption remains constant, the reserves will be exhausted after 54.9 years. At a growth rate of 



 

 

the reserves are not exhausted.  This result is quite important with respect to the question of crude 
oil availability. If consumption were to decrease slightly worldwide, crude oil would be available 
everlasting.  

Differentials: What drives economic growth? 

Differentials are used very intensively in economics. The value of differentials can be demonstrated 
by the very simple model of growth accounting, which can be used to determine the main 
determinants of the growth rate of aggregate output. The starting point is a macroeconomic 
production function that establishes a relationship between factor inputs (here: labor input L  and 
capital input K ) and output Y . Furthermore, we assume that factor inputs change over time. This 
leads to following model: 

A change of Y  results from a change of K  or L . This can be represented using the total 
differential: 

Since we are considering changes in time t , we divide by dt : 

Since the determinants of the growth rate of Y  are to be identified, we divide by Y : 

It follows: 

Define: 



 

 

Finally, we have: 

 
The growth rate of output Yg  is taken as determined by the growth rates of factor inputs ( Kg , resp. 

Lg ) weighted by the partial elasticities of production( ;Y Kε , resp. ;Y Lε ). 

Clearly, this model does not explain very much yet. Using more sophisticated models, the growth 
rates of factor inputs (i.e., Kg  and Lg ) are also explained. For empirical growth research, the 
growth accounting model plays an important role, because under certain assumptions (including 
profit maximization of firms) the partial production elasticities are obtained as input coefficients. 
The application shows in an exemplary way that economics works very pragmatically with 
differentials. In particular, the view usually taught in school that a differential quotient /dy dx  is 
not a quotient is not represented. 

A final remark: as in all sciences, one strives to obtain results that are as general as possible. This 
goal is achieved here to the extent that no special class of production functions (such as Cobb-
Douglas production functions) needs be assumed. The production function only has to be partially 
differentiable once. 

Epilogue 
This article deals with teaching calculus in ME. First, I explained that essential framework 
conditions have an influence on teaching in ME. Then, I presented six features of ME (modeling, 
simplifications, heuristics, application / examples, diagrams / graphical representations, 
measurement) that are widely used in ME. For illustration, I presented four examples. 

To my impression, teachers of core mathematics do not use these features so often as teachers of 
ME. Moreover, teachers of core mathematics may evaluate some of them critically. Obviously, it is 
unclear how meaningful the listed features are and whether there is room for improvement in 
teaching ME. One problem is that there are no strong scientific discourses between teachers and 
researchers from the fields of economics, mathematics and didactics. Moreover, there seems to be a 
lack of networks of the actors working trustfully together. For example, in Germany exists only few 
networks dealing with ME (cf. Centre for Higher Mathematics Education (“Kompetenzzentrum 
Hochschuldidaktik Mathematik”, khdm, www.khdm.de); Network Teaching-learning groups in 
mathematics-containing degree programs (“Lehr-Lern-Verbünde in mathematikhaltigen 
Studiengängen”, LLV.HD, https://www.uni-kassel.de/go/llv-hd/). 

http://www.khdm.de/
https://www.uni-kassel.de/go/llv-hd/


 

 

In such networks, it could and should be discussed whether the features addressed are used sensibly 
and adequately in the sense of good teaching of ME. Thus, assessments of actors from mathematics 
and didactics are needed. However, the associated exchange is certainly not a one-way street. The 
pragmatism necessary in ME in teaching mathematics (and the associated use of certain features) as 
well as the strong focus on (economic) applications may also have the potential for inspiring 
teaching in core mathematics. 

Finally, I should note again that parts of the discussion in this paper have the character of a case 
study. Moreover, I have written the paper against an economic background. The features and 
applications presented are (similarly) the subject of my lecture ME in an economics and business 
administration study program. The short remarks on the agenda and specifically on networks are 
inspired by my research work done during several years of work at an economic research institute. 
All of this implies a certain degree of subjectivity. Nevertheless, the statements should be broadly 
representative for ME. I hope so. Which could be clarified in a network of ME. As soon as 
possible... 
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Abstract 

A calculus that characterizes the interaction between quantities, and the mathematical implications of 

those interactions, will help prepare students who take physics to use mathematics for quantifying the 

natural world, and uncovering its laws. In this talk I characterize essential features of reasoning with 

quantity in physics, and some implications for the teaching of calculus.  

 

Introduction 

Conceptually understanding what calculus is doing when its most basic functions represent relations 

between physical quantities is a more valuable learning outcome for students of physics than 

demonstrating mastery of multiple integration techniques in the contexts of challenging integrals, or 

knowing cold the tests of convergence for unfamiliar series. 

Here is why: 

1. A proceptual facility with functions whose variables are scalar or vector quantities is a central 

feature to expert reasoning in physics. Instructors expect students to have quick facility with 

as well, based on their prerequisite math courses.  

2. The relationship between physical quantities, their change, their rates of change with respect 

to time and position, and their accumulation from these rates of change is central to 

understanding the meaning of the laws of physics. 

3. The clear majority of the models in introductory physics involve linear, inverse, sine, cosine 

and quadratic functions. Students are expected to know the derivatives and antiderivatives of 

these functions, symbolically and graphically, as well as their behavior at physically 

significant points and extreme cases. 

A significant majority of the students who are taking calculus in the US at any given time will 

subsequently take introductory physics - with the main exception being calculus courses for business 

and economics majors. We argue that rate and accumulation reasoning are likely important for all 

calculus students, even those who won’t take a physics course.  

In calculus and in introductory physics, we are essentially teaching the same students. But do they 

perceive what we are doing as being the same things? Arguably, students are "culture-shifting" 

between doing math and doing physics, which limits the quantitative resources they tap into when 

taking a physics course. Bajracharya, Sealey and Thompson interviewed math majors as part of a 

study to uncover how they made sense of a negative definite integral. They observed that invoking a 
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physics example of a stretched spring helped catalyze sense making. Although the physical context 

helped math majors conceptualize the accumulation, there was a perceived departure from the pure 

math world to make meaning, as articulated by one interviewee, “when you think about just, like, the 

pure math problems, that’s all you really think about — just the fact that dx is just telling you …  

what variable to use (in the integral) … but … here, it represents, it represents something…” 

(Bajracharya, Sealey and Thompson 2023). In physics, every variable represents something physical, 

we'd like students to imagine the potential of x and y in calculus to represent a whole variety of 

quantities, even when they’re not prompted. 

It is challenging to serve all the future needs of the students in a service course as ubiquitous as 

calculus. Physics is asking for just a bit less breadth in the interest of more depth, such that students 

can spontaneously decide that taking an integral, or a derivative, or representing a function as a series, 

is a sensible thing to do in a physics context. Why would you integrate? When is it useful to 

approximate a function by terms in a series? And can do it as well. The tradeoff is that by considering 

the interplay between quantities: fundamental quantities, their rates of change, and the accumulation 

of the product quantities they form, can perhaps help a more diverse group of students conceptualize 

calculus as well. 

There is a natural tension between the learning objectives of a calculus course and what students 

really need for a physics course. It is true that our worldviews differ. Physics is about modeling the 

physical world by inventing quantities and their relationships to each other. The ultimate test of 

models is if they predict what happens in nature. Validated models represent the corpus of knowledge 

in physics. Mathematics has different constraints, and its validity test is logical proof. Developing 

reliable capacity to solve problems is an added utilitarian emphasis in both disciplines, to make sure 

that students can "do" math/physics after having taken a course. While becoming efficient at problem 

solving is an important learning objective, an excessive focus on sharpening this skill comes at a 

price. Much is missing in the quantitative reasoning behind why we do what we do, rendering most 

students unaware as to how they can use their quantitative insight to think creatively in physics.  

There is mounting evidence that students struggle with conceptualizing arithmetic and algebra as used 

in introductory physics (Kuo, Hull, Gupta, & Elby, 2011, White Brahmia, Olsho, Smith, Boudreaux, 

Eaton, & Zimmerman, 2021). These difficulties carry over into subsequent course taking. In a 

summary of studies on mathematical reasoning in upper-division physics, the authors found the 

following common student difficulties, despite having taken many math courses beyond the calculus 

level: 

• activating appropriate mathematical tool without prompting (e.g. delta function, Taylor series) 

• recognizing meaning of mathematical expressions 

• spontaneous reflection on results (e.g., limiting cases, dimensional analysis) 

• generating mathematical expressions from physical description 

The students had no problems with executing the mathematics when asked, but they expressed a 

strong desire to understand what they were doing, and why (Caballero, Wilcox, Doughty, and Pollock, 

2015). 



 

 

This paper explores current educational research focusing on the salient aspects of how some 

important calculus concepts appear in introductory physics teaching, with recommendations of 

materials that can help foster a conception of calculus that promotes physics reasoning.  

 

Calculus in introductory physics  

     

Expert physics modeling involves significant overlap of the mathematical and physical worlds 

Consider current a priori cognitive models of modeling in physics and in math contexts, on which 

classroom mathematical modeling activities are framed. The concept of a cycle is ubiquitous, 

exemplified by the Modeling Cycle shown in Figure 1 (Blum & Leiß,2007, Czocher, 2016). Note the 

complete separation of the math world and the rest of the world in the mental process. The model 

implies that mathematizing is done largely in a separate mental place from the context in which it is 

being done.  

 

Figure 1: Czocher's redraft of Blum and Leiß's modeling cycle (Blum & Leiß,2007, Czocher, 2016) 

In contrast to the apriori cyclic models, researchers in mathematics education have found little 

evidence that students' reasoning while modeling is cyclical (Borromeo Ferri, 2007, Ärlebäck 2009).  

In a recent study, Czocher (Czocher, 2016) conducted interviews throughout an academic term of 

four engineering majors enrolled in a differential equations course.  In each interview, the students 

were observed solving problems in everyday contexts that required generating mathematical 

descriptions from a variety of branches of mathematics, including differential equations.  The author 

describes a much finer-grained blending of mathematical reasoning and physical sense-making than 

is represented in apriori cyclic models of modeling, specifically that ̀ `there are transitions that appear 

out-of-order. This was largely because three of the modeling transitions (understanding, 

simplifying/structuring, and validating) appeared early and often throughout the students’ modeling 

processes.''  The importance of continuous validation to the progress of their mathematization is not 

predicted by the apriori models. Czocher presents a fine-grain description of the interpreting and 

validating that was observed, a portion is reproduced in Table 1.  



 

 

The students who were less successful spent little time validating, while students who were more 

successful spent much more time on validation. The subset of skills listed in Table 1 involved in 

interpreting and validating are precisely the skills physics counts on its students mastering to be 

successful at modeling in physics -- they are central to mathematization in physics.  

 

Interpreting Re-contextualizing 

the mathematical 

result 

• Referring to units 

• Answering contextual question, not just 

mathematical one 

• Interpreting meaning from an equation or its 

elements, or from the mathematical representation 

• Referring to conditions/variables/parameters from 

“simplifying/structuring” 

Validating Verifying results 

against constraints 

• Statements about reasonableness of answer/model 

• Checking extreme cases and special cases (of 

variable, parameter, relationship) 

• Comparing answer to a known result 

• Estimating an appropriate result 

• Adding limitations to the model 

• Talking about ideal results 

• Comparing merits of different models 

• Dimensional analysis 

 

Table 1: Adapted from Czocher 2016 (Czocher, 2016) 

In Zimmerman, Olsho, Loverude and White Brahmia's study of expert modelers in physics (graduate 

students and faculty), interviewees were asked to create graphical solutions for novel physics tasks 

(Zimmerman, Olsho, Loverude &White Brahmia, under review). The tasks were isomorphic versions 

of the kinematics tasks used in the study by Hobson and Moore (Hobson & Moore, 2017), but 

rendered more challenging for expert physicists by invoking abstracts contexts and quantities. For 

example, “Going around Gainesville”, which asks the interviewee to generate a graph of the distance 

of a car from Gainesville as a function of the distance it has travelled along the road, became a charged 

probe moving around a small charged sphere. The task prompts participants to create a graph that 

relates the electric potential and the total distance traveled, as it moves at constant speed from start to 

finish. 

 

Figure 2: Still from the animation associated with example task (Zimmerman et al. 2023) 



 

 

Zimmerman et al. report many of the mental actions included in Czochers's description of validation 

are precisely the features that characterize aspects of the study participants’ covariational reasoning - 

specifically their simplification techniques and their tools for covariation when modeling novel 

physics tasks. A subset of the expert physicists reasoning methods uncovered in this study are 

represented in the behaviors in Table 1. We note that reasoning with units, dimensional analysis, 

checking extreme cases, simplifying/structuring and interpreting meaning from an equation and its 

elements are all essential ingredients in physics modeling.  

Many physics students struggle to naturally take up these behaviors in a physics course if they never 

encountered them in a math course before. In a study conducted by Rowland in the context of a 

differential equations course, the author found that despite having completed introductory physics, 

over half of the engineering students were not confident about linking the mathematical expressions 

they were creating to the physics phenomena they represent, and the clear majority failed to 

incorporate the notion that the units of each term in the model should be the same (Rowland, 2006). 

The author argues ``a consideration of units, how they combine, and how they can be used to analyze 

systems in modelling contexts needs to be an explicit part of instruction.'' The disconnect between 

amount and its unit is as much of a problem with physics instruction as it is with mathematics, and it 

is one we can solve collectively by expanding the overlap of our worlds, such that they aren’t 

perceived by our students as separate mental places. 

 

Quantities are central to the laws of physics 

Quantities in physics are either scalars or vectors, and are commonly the result of multiplying and 

dividing other quantities (e.g., momentum, density). Procedurally, the arithmetic involved in creating 

new quantities is not a challenge for most students, however deciding when and why the arithmetic 

makes sense can pose a significant challenge (Thompson, 2011). Vergnaud argues that multiplication, 

division, fraction, ratios, proportions, linear functions, dimensional analysis and vector spaces are not 

mathematically independent, and should be included in a domain he names multiplicative structures 

(Vernaud, 1998). Tuminaro reports on student difficulties conceptualizing the simplest multiplicative 

structures in physics contexts (Tuminaro,2007). 

Quantification produces the physical quantities that are used in physics modeling, and it relies on 

blending physics meaning with a conceptualization of multiplicative structures.  For experts, the 

blending of the mathematical concepts with physics quantities happens unconsciously and seamlessly 

(Zimmerman et al., under review, Kustusch, Roundy, Dray, & Manogue, 2014). Expert-like math-

physics blending is a desired learning outcome of an introductory physics course, yet it needs to be 

nurtured as part of instruction for students to understand and develop creativity as they learn to 

interpret physics models. We suggest that the foundation for this blending can be part of a calculus 

course. For that to happen, we should agree on what we mean by representing quantity. 

Sherin developed a symbolic form framework that explains how successful students understand and 

construct equations in physics. The symbolic form framework posits that students have conceptual 

schema associated with specific symbolic patterns (e.g. the ratio form) commonly invoked to 



 

 

compare two quantities [
𝑥

𝑦
] (Sherin, 2001). Dorko and Spear developed the Measurement symbolic 

form in the context of area and volume in mathematics, which always includes a unit as well as a 

value (Dorko & Spear, 2015). The authors argue that the units are an important part of students’ 

conception of measurement. I make the argument that in physics, where use the term quantity instead 

of measurement, this form should also include a sign, as most quantities students work with in an 

introductory physics course are vector components and other signed quantities. (White Brahmia, 

2019, White Brahmia, Olsho, Smith, Boudreaux, 2020, Olsho, White Brahmia, Smith, & Boudreaux, 

2021,White Brahmia et al. 2021). The units and the sign carry important meaning, and I suggest that 

students can be better primed for this onslaught in physics if they encounter quantity in this way in a 

calculus course. 

 

Figure 3: The Quantity symbolic form relevant to physics builds on the Measurement symbolic form 

by including  sign (White Brahmia, 2019, Dorko & Spear, 2015) 

Both Czocher’s and our (Zimmerman et al, under review) studies provide evidence that successful 

students, and experts, derive physical meaning from “an equation or its elements” (see Table 1), 

which are measured or derived quantities in physics models.  Calculus provides a mental framework 

for thinking about the relationships between quantities in physics, and for imagining new ones. The 

clear majority of quantities in physics have an amount/change/rate/accumulation relationship.  

Figure 4 shows a plot of how some fundamental quantities in physics (examples shown are from 

mechanics) are mathematically processed to create new quantities that eventually play a central role 

in the fundamental laws of mechanics – Newton’s laws and the conservation laws of momentum, 

energy and angular momentum. The fundamental quantities are directly measurable. All the rest are 

derived from these measurable quantities. While each of these quantities is sometimes combined with 

the same type of quantity through arithmetic operations (lengths combine for area, displacement, etc.) 

many of the quantities that are involved in the laws of physics are related to each other as rates and 

accumulations (i.e. ``area under the curve''). We adopt “accumulation” as has been put forward by 

Thompson and others, as it holds much more potential for student comprehension in a physics context 

than area-under-the-curve does. None of these important quantities are actual areas. The notion of the 

derivative/antiderivative/accumulation/change relationships are so important in physics, that 

frequently they are created as new quantities and given their own name - connected through the 

Fundamental Theorem of Calculus (FTC). 

Samuels’ Amount Change Rate Accumulation (ACRA) framework of the FTC shows promise for 

supporting students of physics to conceptualize these relationships (Samuels, 2022, Samuels, 2023) 

in the context of a calculus course (see shaded region of Table 2). I’ve applied the ACRA framework 

in the unshaded region of Table 2 to demonstrate the essential role the FTC plays understanding the 

generation of physics quantities, and the physical laws that relate them to each other.  



 

 

 

 

 

 

 

Figure 4: Quantities encountered in introductory mechanics 



 

 

I argue that quantification is the neglected first step in modeling in physics (White Brahmia, 2019), a 

neglect that increases the likelihood that students’ beliefs about doing physics is that their job is to 

find the right equation (Kuo, Hull, Gupta, & Elby, 2011, Hammer, 1989). The notion that they can 

participate in the mathematical creativity of quantification, and modeling, is largely lost on them. 

Physics has a long way to go such that all students feel confident in their capacity to engage in creative 

mathematization. Given the preponderance of calculus concepts involved, deepening students’ 

conceptual understanding of what they are doing and why they are doing it in calculus can help 

students’ feel more confident modeling in physics.  

 

Expert Modeling in physics involves a small number of functions  

Models in physics typically involve only a small finite number of functions. At the level of 

introductory mechanics, the laws of physics are dominated by linear and inverse functions, with the 

more complex combinations of functions that are frequently addressed in a calculus course rarely or 

never appearing. 

 

Figure 5: Functions encountered in introductory mechanics 

 

I generated Figure 5 by going through a list of the essential formulas for introductory physics, which 

is representative of just about any standard college physics textbook, and sorting it by function type, 

noting the frequency of appearance for each function type. The uncertainty on the values shown is 

likely a few percent. Each of the limited number of functions listed in Figure 5 are central to the 

covariational reasoning of physics.  

 



 

 

Physics 

quantity 

𝑓(𝑏) − 𝑓(𝑎) = 
∫ 𝑑𝑓
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𝑥=𝑎

 
= 

∫
𝑑𝑓

𝑑𝑥
𝑑𝑥

𝑏

𝑎

 
= 

∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎

 

 Total change 

(accumulatio

n) 

 Infinite 

sum of 

every 

infinitesim

al change 

 The integral (infinite 

sum) of every 

(infinitesimal 

change)  

(infinitesimal input 

change)  

(infinitesimal input 

change) 

 The integral 

(infinite sum) 

of infinitesimal 

rate (as a 
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displacement 𝑥(𝑡2) − 𝑥(𝑡1) = 
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 Change in 

position 

 Same as 

above…in 

position 

 Same as above  The integral of 

the (signed) 

velocity times 

tiny time 

intervals 

v       (Needs 

a name!!) 
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above…in 

velocity 

 Same as above  Same as above 

(acceleration) 

impulse 𝑝(𝑡2) − 𝑝(𝑡1) = 
∫ 𝑑𝑝

𝑡=𝑡2

𝑡=𝑡1

 
 

∫
𝑑𝑝

𝑑𝑡
𝑑𝑡

𝑡2

𝑡1

 
 

∫ 𝐹(𝑡)𝑑𝑡
𝑡2

𝑡1

 

 Change in 

momentum 

 Same as 

above…in 

momentu

m 

 Same as above  Same as above 

(force) 

work done 

on system 

𝑈(𝑥2)

− 𝑈(𝑥1) 

= 
∫ 𝑑𝑈

𝑥=𝑥2

𝑥=𝑥1

 
 

∫
𝑑𝑈

𝑑𝑥
𝑑𝑥

𝑡2

𝑡1

 
 

∫ 𝐹(𝑥)𝑑𝑥
𝑡2

𝑡1

 

 Change in 

potential 

energy 

 Same as 

above…in 

potential 

energy 

 Same as above  The integral of 

the (signed) 

force times tiny 

displacements 

Table 2: My extension of ACRA (shaded) FTC to include important physical quantities (unshaded) 



 

 

 

Figure 6: Experts interaction with functions when modeling 

Knowing what they look like graphically, how the behave covariationally, how they behave in the 

limits of very large and very small values of the independent variable, and any other special cases 

that are specific to the function (e.g. min/max/zeros/special arguments of sine or cosine functions) 

facilitates modeling for experts (Zimmerman et al, under review). Students who have this deep 

understanding of these functions before taking a physics course will be at a significant cognitive 

advantage; it is expected knowledge. In the Zimmerman et al study, we found that when modeling, 

experts engaged in behaviors of function knowing, function choosing or function generating – which 

become more cognitively demanding moving from left to right in Figure 6. Experts first look for a 

function they know based on a similar context (e.g. circular motion invokes sinusoidal functions), 

and if that fails they tend to choose from the list in Figure 5. If that is unsuccessful, then they try 

generating a graphical function by invoking covariational reasoning tools (see Table 1 and 

Zimmerman et al.), designating several physically significant points. They engage in “neighborhood 

analysis” by considering the first derivative in the neighborhood of these points, and then connecting 

the points with a line or curve, by considering the 2nd derivative behavior between the points. 

An important feature of function choosing and function generating is that they are generally evoked 

in the context of some sort of data that might (or might not) show a trend consistent with a meaningful 

function. This modeling scenario is ubiquitous in physics, whether graphically modelling an 

imaginary situation, or collecting actual data in an experiment and modeling the patterns that emerge 

from the data. Clean analytical solutions are the exception rather than the norm beyond the 

introductory course when comparing the real-world patterns to mathematical functions. Making 

approximations are a standard part of rendering a messy physical system tractable. Einstein famously 

said, "Everything should be made as simple as possible, but not simpler." Rather than resorting to 

messy functions, we always hope for one of the functions in Figure 5. Series representations of those 

functions, especially their first couple of terms, become a standard tool for modeling the physical 

world beyond the introductory course, and are even invoked in a couple of contexts there as well (e.g. 

small angle approximation for simple pendulum). Knowing how common approximations are used, 

and why, would be a wonderful outcome of calculus for physics students.  

 

Recommendations for the teaching of calculus 

While I’m not an expert in calculus instruction, I understand that changing the content in courses as 

institutionalized as tertiary-level calculus courses are in the United States is not straightforward. I 

suggest here some effective, research-validated materials that help students construct their 

mathematical knowledge in the contexts of quantity. They were all designed to be used in the context 

of classroom instruction, ideally in collaborative learning environments. 



 

 

Developing conceptual foundation 

Physics Invention Tasks (White Brahmia, Kanim, Boudreaux): Designed to engage students in 

authentic quantification, in preparation for subsequent formal learning. Students use data from 

contrasting cases to invent ratio or product quantities, rules or equations to characterize a variety of 

physical systems. Students work through sequences of such tasks to ramp up from everyday contexts 

to more abstract physics contexts. We have field tested sets of invention tasks, called invention 

sequences, both at the pre-college level, in middle school and high school, and in a variety of 

introductory physics courses, from pre-service teachers to engineering students. 

https://depts.washington.edu/pits/Background.html 

Precalculus: Pathways to Calculus (Carlson, Oehrtman, Moore, O’Bryan):  

Textbook, workbook and supplemental materials that facilitate student construction of calculus ideas 

that are particularly relevant in physics, especially constant rate of change and linear function, and 

changing rates of change, using covariation. Includes vector quantities, sequence and series 

representation as approximation. Focusses on less breadth in the variety of functions in favor of 

building a deeper understanding of the functions themselves using multiple representations and many 

relevant applications, while students are constructing their knowledge, not as an afterthought.  

https://www.greatriverlearning.com/product-details/2212 

 

Calculus course activities  

DIRACC Calculus: (Thompson, Ashbrook, Milner) The intention of this work is that students 

understand a calculus that is about more than lines, areas, and pseudo connections with quantitative 

situation, with focus on their reasoning about quantities and relationships among quantities. The focus 

on the FTC as relating rates of change and accumulations such that students must conceptualize rate 

of change as a relationship between quantities who vary is well-aligned our students needs. The use 

of dynamic graphs as a representation is brilliant, and will help prime students for the ubiquitous 

reference to “goes like” reasoning their instructors use from the very first day (Zimmerman, Olsho, 

White Brahmia, Boudreaux, Smith, & Eaton, 2020).  http://patthompson.net/ThompsonCalc 

ACRA framework: The relationships between quantities of single-variable calculus can be described 

using the ACRA Framework (Samuels, 2022, Samuels 2023). An example of a quantity-focused 

approach to the FTC is in the shaded region of Table 2. This mode of reasoning entails 

“conceptualizing a situation in terms of quantities and relationships among quantities” (Thompson & 

Carlson, 2017), where a quantity is a measurable attribute combined with a way to measure that 

attribute. (contact Joshua Samuels directly for materials) 

CLEAR Calculus: (Oehrtman, Tallman, Reed, Martin) Instructional activities that generalize across 

contexts to extract common mathematical structure, that are designed to foster quantitative reasoning 

and modeling skills required for STEM fields. Students both develop useful tools, and engage in 

activities that reveal the mathematics to be learned, thereby developing productive understandings 

that can serve as a strong foundation for further study in math and science. The approach to 

approximation here is well-suited to physics students. https://clearcalculus.okstate.edu/ 

https://depts.washington.edu/pits/index.html
https://www.greatriverlearning.com/product-details/2212
http://patthompson.net/ThompsonCalc/
http://patthompson.net/ThompsonCalc
mailto:mailto:jsamuels@bmcc.cuny.edu
mailto:mailto:jsamuels@bmcc.cuny.edu
https://clearcalculus.okstate.edu/
https://clearcalculus.okstate.edu/


 

 

 

Conclusion 

A calculus course could include many fascinating topics that can unleash quantitative imagination 

and creativity. I’ve argued that for those calculus students who intend to pursue majors that also 

involve taking physics courses, that a calculus that characterizes the interaction between quantities, 

and the mathematical implications of those interactions, will help prepare those students to use 

calculus ideas for quantifying the natural world, and uncovering its laws. The students will see the 

world through a mathematical frame, with all its wonder and potential, and try out their skills 

predicting what nature will, and will not, reveal through observation. Mathematizing physics is 

founded in measurable and derived quantities, including its sign and units. The function library of 

physical laws isn’t vast, but conceptualizing those functions that appear is essential. Conceptually 

understanding what calculus is doing when its most basic functions represent relations between 

physical quantities opens the door for students to learn physics as Newton did. There is a growing 

collection of effective activities that can help calculus students learn to quantify, and deepen their 

facility with the formalism associated with function, changes in quantity, rates of change, 

accumulation and approximation. This paper was written to help foster discussions and provide 

impetus for the great work described herein to continue, and to inspire more to come.   
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Introduction 

The chain rule is one of the key concepts in calculus and forms a basic component of implicit 

differentiation, differentiation of inverse functions, and integration by substitution. Mathematically, 

the chain rule states that (Adams & Essex, 2010, p. 115): 

If      is differentiable at       , and      is differentiable at  , then the composite function 

                 is differentiable at  , and  

                         

The essence of the chain rule is that it explains the compound ratio among variables (Guicciardini, 

2003). Thus, in Leibniz notation, the chain rule can be written as: 

  

  
 

  

  
 
  

  
 

Students’ difficulties in understanding the chain rule have been reported in the research literature 

(e.g., Clark et al., 1997; Maharaj, 2013). Also, Tall (1993) found that “the Leibniz notation 
  

  
 

proves to be almost indispensable in the calculus. Yet it causes serious conceptual problems. Is it a 

fraction, or a single indivisible symbol? What is the relationship between    in 
  

  
  and the    in 

         Can the    be cancelled in the equation 
  

  
 

  

  
 
  

  
 ?” (p. 19). Moreover, the formal 

proof of the chain rule seldom sheds light on its meaning, since it uses an algebraic trick (Cottrill, 

1999).  

Teaching the Chain Rule in an Engineering Context 

Sazhin (1998) states that when engineering students learn mathematics, they need to know why this 

mathematics is essential for their engineering profession. Furthermore, equations need to be 

illustrated by examples from praxis, and the students need to have the necessary steps in algebraic 

manipulation highlighted. This is in line with the three worlds of mathematics stipulating, e.g., the 

importance of conceptual embodiment (Tall, 2013). Many studies (e.g., Uygur & Özdaş, 2007) have 

pointed out that teaching the chain rule should be done in real contexts. However, there have only 

been a few educational studies on incorporating real situations in teaching the chain rule (Park & 

Lee, 2016). Our paper attempts to fill that gap. 

Our proposed teaching experiment consists of presenting a series of tasks aimed at facilitating the 

students’ inquiry into the chain rule through an engineering context. The tasks will be integrated in 

the teaching of an engineering dynamics course in Spring 2023 for engineering students, enrolled in 

the study program “Sustainable Design”, at Aalborg University, Denmark. The first author of this 

paper is the instructor of the course. The evaluation and results of the teaching experiment will be 

the subject of a future research paper. We plan to analyze the students’ answers to the tasks. We 

mailto:imad@plan.aau.dk
mailto:bdahls@plan.aau.dk


will also interview some students to understand how they view the relevance of mathematics in an 

engineering course. In this paper, we will illustrate two tasks.  

Task 1 

Assume the carbon monoxide pollution in the air changes at the rate of 0.02 ppm (parts per million) 

for each person in a city whose population is growing at the rate of 1000 people per year. Find the 

rate at which the level of pollution is increasing with respect to time (Strauss et al., 2002, p. 138).  

The purpose of this task is to allow the students to develop an intuition for the multiplicative nature 

of the chain rule and its composite elements and obtain an equation like 

  

  
 

  

  
 
  

  
 

where   is the level of pollution,   is the population, and t is time. Here, the Leibniz notation makes 

it visual to the students how 
  

  
 is calculated “via” knowledge about how the population changes. 

Referring back to Sazhin (1998) and Uygur & Özdaş (2007), we believe that a task like this which 

clearly involves an example as illustration from their engineering profession may but illustrate to 

the students why they need to learn about the chain rule, and they can work with the various 

algebraic parts of the chain rule and have the components explained and discussed. 

Task 2 

Given an illustration of a gear train in Figure 1. When the blue gear makes   turns, the black gear 

makes   turns and the red gear makes   turns. By counting the number of teeth of each gear, 

a) How are u and y related to x? 

b) How many times does the red gear spin for every one spin of the blue gear? 

 

Figure 1: A gear train (drawn by the first author) 

The purpose of this task is to help the students see both a composite function and the chain rule in 

action, by finding out that      and   
 

 
  

 

 
 , and realizing that for every one rotation of the 

blue gear, the black gear will spin twice, and for each rotation of the black gear, the red will spin 
 

 
 

turn. In Leibniz notation, 
  

  
   and 

  

  
 

 

 
 and thus,  

  

  
 

  

  
 
  

  
 

 

 
   

 

 
 

Some functions can be written as composite functions in different ways and, to confirm that this 

will not change the final derivative, the students can examine what happens when the size of the 



black gear is changed. If the black gear has 24 teeth, then 
  

  
 

 

 
 and 

  

  
 

 

 
. Finding 

  

  
 and thus 

confirming the chain rule, can again be done by visualizing the gears turning. Thus, 
  

  
 

 

 
 

 

 
. As 

before, 

  

  
 

  

  
 
  

  
 

 

 
 
 

 
 

 

 
 

Although this task is also from an engineering profession, the illustration in Figure 1 is more 

idealized and a particular context is not mentioned. However, in the actual teaching, a presentation 

of a context to the task, alongside pictures or perhaps even an physical model is planned. 

Nevertheless, it is easy to find real examples of gear trains. A physical model of a train gear may 

also be a way to stimulate the conceptual embodiment (Tall, 2013). 

An intuitive proof of the chain rule 

The culmination of these tasks, as well as others, consists of giving the students an intuitive, visual 

“proof” of the chain rule, illustrated in Figure  (Thomas et al., 2010, p. 143), using the 

multiplication of rates of change (derivatives), which they use in the tasks. This “proof” may be 

sufficient for engineering students to understand and apply the chain rule in realistic situations. The 

purpose of the visual proof is to let the students realize that the function        acts as a 

mediator between the input   and the output  , as shown in the figure, and by observing the 

position of    in the formula 

  

  
 

  

  
 
  

  
 

This observation can help the students remember the chain rule. 

 

Figure 2: Illustration of the chain rule through rates of change 

Conclusion 

An overemphasis on instrumental procedures and calculations can make it hard for students to make 

sense of mathematics and apply it appropriately in the future (Skemp, 2006). Students’ struggle to 

understand and appreciate the chain rule could, in part, be related to the fact that these students, 

whether at secondary school or at university, are required to put too much emphasis on procedures 

and manipulation of symbols, instead of focusing on gaining a conceptual understanding from the 

beginning. Real-life problems on related rates can potentially be a great way for students to 

experience the reasoning behind the chain rule before it is abstracted. 



We wish to argue that mathematics for engineers should be taught in meaningful contexts and 

through well-designed tasks that allow the students to acquire genuine understanding of 

mathematical concepts, such as the limit of a function (Abou-Hayt et al., 2019) and the chain rule.  
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Abstract: In this study, we investigate undergraduate students’ understanding of two multivariable 

calculus concepts, the gradient and the Laplacian, using open ended paper-and-pencil tests. We 

study students’ reasoning in two contexts: math and physics, and in different graphical 

representations of multivariable functions: 3D graphs and contour plots for the gradient, and 3D 

graphs and vector plots for the Laplacian. Findings reveal that students often have similar 

difficulties in both contexts, but they have a context-specific preference for representing their 

answers and demonstrate varying reasoning competencies for the same concept in different answer 

representations. Observed difficulties for each concept will be addressed.  

Introduction 

The interplay between math and physics has many aspects. The two disciplines become more 

interconnected in advanced physics courses, where the application of math concepts is significantly 

different from that in math courses, thus creating challenges for students (Karam et al., 2019). 

Students’ difficulties with mathematics in physics have been previously investigated on topics such 

as student understanding of vector calculus in the context of electromagnetism (Bollen et al., 2017) 

and partial derivatives in the context of the one-dimensional heat equation (Van den Eynde et al., 

2022), however studies investigating students’ understanding of multivariable calculus concepts in 

physics are limited. Expanding the knowledge on students’ challenges with concepts like gradient, 

Laplacian, and multivariable functions in a physics context can shape instruction to support students 

in utilizing the interplay of the two disciplines. Some studies have considered multivariable calculus 

concepts involving functions of two variables (Martínez-Planell, & Trigueros, 2021) including 

gradient (Moreno-Arotzena et al., 2021) in a math context. In this paper, we investigate the 

students’ difficulties with the concepts of gradient and Laplacian and compare their reasoning 

strategies in a math context and in a physics context. 

 

Methods 

To investigate students’ understanding, we designed conceptual questions within a graphical 

setting. Students were asked to interpret a graphical representation and to explain their answers. 

Four questions per concept were developed based on two facets: (1) context (math or physics) and 

(2) the graphical representation of the multivariable function used in the problem statement (graph 

or contour plot for gradient, and graph or gradient vector field for Laplacian). Figure 1 shows the 

graph (a) and the contour plot (b) of the function in the problem statement of the gradient question 

in a physics context. The questions were validated through individual “think-aloud” interviews and 
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were administered as paper-and-pencil tests to 185 first-year students enrolled in calculus based 

introductory physics courses and multivariable calculus courses. Students gave individual responses 

in an exam-like setting. 

Each student solved a gradient question and a Laplacian question either in math or physics context 

and in only one representation. In the gradient question, students were asked to choose from four 

possible gradient vector field plots the one that corresponds to the 3D graph or contour plot. In the 

Laplacian question, students were asked to indicate whether the Laplacian is zero or non-zero at a 

given point. In both questions, students were then asked to explain their choice using the given 

graphical representation and to give a general interpretation of the concept. Thematic analysis was 

used to categorize student answers. The coding schemes were built bottom up from the data. 

  

Figure 1: Graph (a) and contour plot (b) of a function of two independent variables assigned 

to students in the physics context. Students were given only one of the representations. 

Findings 

To describe the students’ understanding, the emergent codes were categorized into themes. In what 

follows we focus on student difficulties within three themes: the graphical theme, which includes 

codes with a graphical reference such as steepness; the vector theme, which includes codes referring 

to the gradient vector nature or its representation; the semantic synonym theme, which includes 

codes referring to an explicit or implicit linguistic meaning of the concept such as rate of change.  

Gradient: Steepest incline at a point in 3D  

When linking the steepness at a point on the graph to the vector nature of the gradient, students’ 

answers lacked specificity. Almost a quarter of the students did not differentiate between steepness 

and steepest incline in their explanations. For example, students stated that the direction of the 

gradient vector follows the slope while ignoring that at a point on the graph of a function of two 

independent variables there could be multiple ascends of different slopes and the gradient vector 

follows the steepest ascend. We argue that such answers adopt a two-dimensional approach for a 

function of one independent variable where there is only one slope in a point. This leads us to 



 

 

question whether these students can extend their 2D understanding of steepness at a point (function 

of one variable) to three dimensions in the case of a function of two independent variables. Taking 

this a step further, 7% (7 out of 96) of students referred to the global maximum when linking the 

steepness on a graph to the gradient vector field where the highest point instead of the steepest slope 

was taken as a reference for the direction of the gradient vector at a point. 

In the contour plot questions, 13% (12 out of 92) of students correlated the magnitude of the 

gradient vector at a point incorrectly with the spatial distance between adjacent level curves. These 

students associated a wider spacing between two consecutive level curves with a longer gradient 

vector, and vice versa. In addition, almost 25% (24 out of 92) of students who answered the contour 

plot gradient question chose the gradient vector field where the vectors were tangent to the level 

curves instead of perpendicular. In their explanations, almost 30% (7 out of 24) of these students 

related the steepness of the tangent to the level curves to the length and direction of the gradient 

vector. This not only shows that students have a difficulty understanding a contour plot, but it also 

confirms our interpretation of their difficulty with extending the concept of steepness to three 

dimensions 3D. 

Gradient-Laplacian Equivalency 

Students struggled to represent the Laplacian graphically. 43% (54 out of 124) of students 

associated a zero value for the Laplacian with the presence of an extremum at a point on the 3D 

graph or with the absence of a vector at a point on a gradient vector field. We interpret this as 

students seeing a graphical equivalency between the gradient and the Laplacian specifically when 

they describe the magnitude.   

Most students described the Laplacian with the same terminology that other students used for the 

gradient. Terms like “change” and “biggest/highest change” were used similarly (and incorrectly) to 

describe both concepts. Symbolically, some students wrote the algebraic expression of the gradient 

when they were asked about the Laplacian, or expressed the Laplacian in another incorrect vector 

representation, which further supports our interpretation. 

49% (29 out of 59) of students who solved the Laplacian question in the gradient vector field 

representation did not interpret the divergence. In their answers, students associated a zero value for 

the gradient at a given point with a zero value for the divergence of the gradient or the Laplacian at 

that point. A lack of comments about the divergence operator’s effect on the gradient vector field in 

the students’ answers strengthens our interpretation that many students see gradient and Laplacian 

as equivalent. While students might know that Laplacian and gradient are two distinct concepts, 

they do not seem capable of establishing a clear distinction in their explanations and interpretations. 

At introductory physics level, similar difficulties have been observed between velocity and 

acceleration, and electric field and potential. 

Context 

The observed difficulties explained were consistent across the math and physics contexts. However, 

students’ use of representations in their own explanation differed between contexts. Overall, 

students were more likely to use semantic synonyms in a physics context for both concepts. For the 



 

 

gradient, in the physics context, students typically linked the gradient vector at a point to a semantic 

synonym such as “highest/biggest change”. In the math context, they linked it more often to a 

graphical aspect such as the proximity of level curves. For the Laplacian, students in general 

showed a tendency to use semantic synonym for their answers in a physics context.  

Students performed worse when they interpreted both concepts using semantic synonyms. In 

contrast, they performed better in the Laplacian question when they answered algebraically with 

formulas and expressions, and better in the gradient question when their answers had a graphical or 

vector nature reference. 

Implications 

The difficulties revealed in this work contribute to the knowledge on students’ understanding of 

multivariable calculus concepts in physics and math contexts. It was shown that students have 

difficulties in representing the concepts using graphical and semantic synonyms references in both 

contexts. This highlights that students need more support in their conceptual understanding which, 

if improved, gives them access to the conceptual knowledge within different representations of the 

same concept and therefore be able to connect the abstraction represented symbolically to 

contextualized knowledge. This could possibly make the combination of math and physics within 

more advanced topics like the two-dimensional heat equation less challenging for the students. 
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Introduction 

Multivariable calculus is a very large and important branch of mathematics, which entails different 

results of both single variable calculus and linear algebra, and intertwined with basic aspects of 

topology, differential equations and differential geometry. Moreover, it is fundamental to physics, 

from classical mechanics and electrodynamics to quantum theory and relativity. Historically, the 

development of mathematics and physics has been closely related, but despite these relationships, 

it is a common knowledge that “non-specialist students encounter difficulties with mathematics” 

(González-Martín, Gueudet, Barquero, & Romo-Vázquez, 2021). Regarding physics, there is some 

evidence on differences described by means of the theoretical framework of the Anthropological 

Theory of the Didactic, thus e.g. Hitier & González-Martín (2022) compare students’ knowledge 

concerning the concept of derivative in physics (mechanics) and mathematics, and difficulties that 

students meet when transferring from one field to another. In this paper we focus on the role of 

integrals of multivariable functions in the (undergraduate) study program of physics. Each such 

program has its own institutional specificities, some focus more on the experimental side of 

physics, while others are more theoretically inclined or combined with the study of mathematics. 

The position of multivariable calculus may hence be quite different. On the one hand, there could 

be a separate course on multivariable calculus which develops the theory systematically and 

thoroughly, sometimes taught by a mathematician. Such approach might lead to 

compartmentalization and weak connections of the taught knowledge to its applications in other 

courses. In other programs, where there is no such course, the many different pieces of 

multivariable calculus are taught within other (physics) courses.  

Motivation, research question and theoretical framework 

This paper is part of an ongoing research about curves and surfaces, as main geometrical objects in 

multivariable calculus. We formulate the study in the language of the Anthropological Theory of 

the Didactic (ATD) (Chevallard, 1991), which describes (mathematical) knowledge in terms of 

praxeologies as the set consisting of types of tasks, techniques needed to carry them out, 

technologies that justify the techniques, and theories that sustain technologies. Praxeologies 

describing a piece of knowledge form a reference epistemological model (REM), a relative and 

hypothetical model set by a researcher, established depending “on the didactic problem 

approached and the phenomena one wishes to study” (Bosch, Gascon, & Trigueros, 2017, p. 43). 

ATD further emphasizes institutional construction of knowledge, which in our case would concern 

two institutions – institution of mathematical courses and institution of physics courses, further 

analyzed in their relationship. For undergraduate courses on multivariable calculus carried out for 

students of mathematics, REM on geometrical aspects that are intrinsic to the calculation of 

multivarible integrals was developed by Bašić & Milin Šipuš (2022). Our intention in this study is 

to delimit the role of multivariable integrals in the (undergraduate) study program of physics and 
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therefore we question: How do the perspectives of mathematics and physics students differ with 

respect to multivariable calculus/integrals? Which praxeologies of multivariable integrals are not 

present in the physics program and how is that compensated?  

Context of the study  

We investigate the situation at the Department of Physics at the Faculty of Science in Zagreb, 

Croatia. There was only an elective course Mathematical analysis in space, in which the 

mathematical formalism of multidimensional calculus was introduced and presented, but even this 

course was recently taken out of the program. Hence, we consider a study program in which the 

multivariable calculus is taught by physicists throughout many different courses.  

We analyzed the written lecture notes for the course Classical electrodynamic (CED), taught in the 

third year. The students report that this is the most difficult course for them so far. Certainly, one 

of the reasons is that it is the most demanding course in terms of needed mathematical 

competencies, some of which not developed anywhere else in the study program. To investigate 

the differences between the use of multivariable integrals among the physicists and 

mathematicians, we have compared the course materials with the earlier mentioned REM and we 

interviewed the teaching assistant of CED. The purpose of the interview was to gather insights into 

practices of the institution and the experience of the students as they encounter the mathematical 

problems related to multivariable integrals. Interview was performed by the first author and lasted 

for about 30 minutes. The interview was structured by the following questions: In which courses 

students encounter multivariable integration? Is the concept of Riemann integration in multiple 

dimensions discussed? In which way do the students learn how to approach integration problems 

and choose appropriate coordinates? Which coordinate systems are used and how are nonstandard 

changes of variables treated? How do students use and interpret Gauss and Stokes theorem? Are 

they presented as instances of the same formalism? What are, in your opinion, differences among 

mathematicians’ and physicists’ understanding of multivariable integrals?  

Results and discussion 

The lecture notes for the course CED are written in a very pedagogical style, introducing 

mathematical and physical concepts gradually, and supplemented with appendices on 

mathematical theory. They are based on the well-known and widely used textbooks. As the author 

says: “the more advanced mathematical concepts are introduced later during the course to alleviate 

the complexity of the subject”. The notes comprise of more than 380 pages, and start with the 

“Panoramic view of electromagnetism”. We focus on the chapters on electrostatics, magnetostatics 

and electrodynamics – covering the four Maxwell equations, in both the differential and integral 

form. Integration techniques are not treated separately. The appendix on coordinate systems begins 

with the overview of cylindrical and spherical coordinates, expressing the important tensors in 

these coordinates, and then continues with mentioning the formulas for less frequent coordinates: 

ellipsoidal, bispherical and toroidal. We consider also solved exercises and exam questions, from 

which we present one in Figure 1. It shows the typical situation described in geometric terms, in 

which it is clear which coordinate system should be used. The situation carries a lot of symmetry 



 

 

and the students are expected to use the formulas given in the lectures. The computation is lengthy, 

but if the coordinates are plugged in carefully, it turns into a simple integral of one variable.  

A homogenous (hollow) sphere of radius R carries charge Q. Determine the force 

with which the remainder of the sphere acts on the sphere cap of the polar angle  .  

Source of the image: https://commons.wikimedia.org/wiki/File:Spherical_cap.gif 

Figure 1: Typical task involving spherical coordinates in Classical electrodynamics 

From the interview we learn that the use of cylindrical and spherical coordinate systems are taught 

from the first year ‘on the go’ in the scope of various courses, e.g. General physics, Classical 

mechanics etc. We may notice that the first encounter - find the center of the mass, the inertial 

moments etc. - is similar to the problems that are given in the mathematics courses. These 

examples take advantage of the presence of symmetry.  

There are three coordinate systems used by physicists: Cartesian, cylindrical and spherical. Other 

coordinate transformations (e.g. rotating the plane for 45 degrees,                 ) are 

familiar only to a few students and shown as peculiarities. The students learn how to use them 

situationally – one uses the cylindrical system for a cylinder or a long rod, while the spherical 

system for a sphere or a point source. After making a choice of an appropriate coordinate system, 

the integration problems are usually such that the iterated integral has separated variables. For the 

problems that are not posed in such a way, the students are given the instruction in form a rule they 

are advised to follow: “in spherical coordinates integrate in the order phi-theta-r”. This also shows 

that the problems are suited for this kind of iterated integration. As claimed by the teaching 

assistant, a student can graduate from the physics program, using only iterated single variable 

integrals. We can conclude that for the part on Riemann integration, the theoretical part of the 

(regional) praxeologies are not presented. Fubini’s theorem is used implicitly as the integration 

over geometric objects is directly reduced to parametrizations and iterated integrals. So, as 

opposed to mathematics courses, the physics students only need to master one type of conversion 

between representations and algebraic equations of geometric objects are not used. Moreover, the 

practical block rarely considers objects other than rods, cylinders, points and spheres. The second 

order surfaces (e.g. paraboloids and hyperboloids) and the intersections of multiple such surfaces 

is not considered. Hence, the geometric praxeologies related to relative position of the surfaces are 

not needed or present.  

We may notice some similar phenomena for the theory and main theorems concerning surface 

integrals. For a physics student at the level of classical electrodynamics, Gauss’ and Stokes’ 

theorem are quite different results, representing constraint equations and evolution equations. 

Teacher points out that it is not of such great importance that they may be seen as consequences of 

the same formalism. Moreover, these results are considered by physicists as “technical tools that 

enable practical considerations and simplifications of integrals, similar to the technique of partial 

integration, and are used mechanically”. These theorems are deduced using a simplified 

argumentation that is based on two main ideas: curves and surfaces are represented as unions of 

linear objects (segments or rectangles) and then the results are deduced by passing to the limit 

(considering ‘inifinitesimal’ partition of the geometric object). For a physicist “this argument is 



 

 

acceptable because of its plausibility and accordance with intuition about space and geometry”. 

The issue for students appears as the concepts of surface orientation and differential forms are not 

developed, so the rules for changing the sign in the surface integral (e.g.              and 

     ) remain vague and unexplained. In general, the solutions of equations should in addition 

consider ‘natural’ boundary conditions, e.g. they vanish at infinity (as fast as needed).  

As the main difference, the teacher emphasizes that the approach of mathematicians is more 

systematic and complete, developing the concepts gradually, while the physicists’ approach is 

more connected interpretation, using integrals as tools and obtaining results in a limited number of 

situations of interest. As to the views on the specific program, the institution withholds the tension 

between theoretical and experimental physicists, ones inclined to talk more about ‘tensors’ and the 

other about ‘sensors’.  

We conclude that that there is no clear answer to the question of more efficient mathematics 

education of physicists, but that it is clear that the knowledge to be taught requires a much deeper 

didactic transposition that will provide at least some parts of the technologies in order for the 

students to feel confident about understanding the procedures they follow and to carefully select 

the techniques and types of tasks that are relevant to most typical physical situations. The students 

might be encouraged to pursue deepening their knowledge on their own or through additional 

(elective) courses, depending on their future academic perspectives. In the end, there is never a 

perfect balance, but we might certainly hope that the multivariable calculus for physicists will 

remain being taught either by mathematicians that are aware of the true needs of the physics 

program, or a slightly theoretically inclined physicist that is enthusiastic about the systematic 

development of mathematical knowledge.  
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In recent decades the use of mathematics in biology and the life sciences has both become more 

prevalent and has earned new respect (May, 2004). In 2009 the National Research Council (NRC) 

called for a “New Biology” that would combine the different sub-fields of biology “through the 

unifying languages of mathematics [and] modeling” (2009, p. 4). This evolution of the biological 

sciences has been accompanied by high profile reports calling for the reform of mathematics 

instruction for biology and life sciences students (e.g., NRC, 2003; American Association for the 

Advancement of Science [AAAS], 2009). Echoing these calls from professional associations, the 

Association of American Medical Colleges issued a joint report with the Howard Hughes Medical 

Institute (AAMC, 2009) listing the competencies that undergraduate students should master when 

entering medical school. Interestingly, these skills include quantifying and interpreting changes in 

dynamical systems as well as using mathematical models to make inferences about natural 

phenomena, but not computing derivatives by hand nor proving theorems (AAMC, 2009). 

Recognizing the need for reform, the UCLA Life Sciences Division decided in 2013 to create a new 

“Calculus for Life Sciences” course. This course would focus on the mathematical concepts truly 

used by biologists. Moreover, it would genuinely interweave the biology and mathematics. In the 

rest of this paper, we start by identifying mathematical concepts that are important in biology and 

can be studied in a calculus course. We then describe the content of the new Calculus for Life 

Sciences course developed at UCLA and explain the approach taken to teach these concepts. We 

finish by briefly describing the impact of the course and some concluding remarks. 

Mathematical Concepts Used in Today’s Biology  

When designing the new curriculum, the first point that quickly became clear was the necessity to 

focus on modeling and dynamical systems. The AAAS’s report (2009) states that “studying 

biological dynamics requires a greater emphasis on modeling […] than ever before” (p. 3). The 

same report lists the “ability to use modeling and simulation” (p. 14) as a core competency for 

undergraduate biology students. In the same vein, the AAMC states that pre-medical students 

should be able to “make inferences about natural phenomena using mathematical models” (2009, p. 

23) as well as “quantify and interpret changes in dynamical systems” (2009, p. 24). To a 

mathematician, these recommendations may imply that a calculus course for biologists should 

quickly move from the definitions of derivative and integral to focus on solving differential 

equations. Such a course would review the different types of differential equations and the 

techniques to solve them. However, this would not be taking the needs and practices of biologists 
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into account. Indeed, the NRC specifies that while students should study mathematical models that 

involve ordinary differential equations, these equations should be “made tractable and 

understandable via Euler’s method without any formal course in differential equations” (2003, p. 

172). The same report underlines that “the emphasis should not be on the methods per se, but rather 

on how the methods elucidate the biology” (2003, p. 170). The reliance on numerical methods to 

solve differential equations comes from the fact that almost all differential equations arising in 

biology are not analytically solvable and thus do not have closed form solutions, making the study 

of techniques to solve such equations by hand pointless. It also highlights that for biologists, 

differential equations are really a tool that describes how a system changes with time. This tool is 

used to make predictions about the future evolution of a system and to gain a new understanding of 

the biology. In other words, it is the biological meaning of the equations (and of their solutions) that 

is important, not the equations per se. This perspective is shared by the AAMC when it states that 

pre-medical students should be able to “describe the basic characteristics of models” (2009, p. 24) 

and “predict short- and long-term growth of populations” (2009, p. 24). 

A very important aspect in biology is to determine the qualitative, rather than quantitative, nature of 

biological systems’s dynamics. For example, when studying predator-prey populations, a 

fundamental question is not so much towards which precise number each population will tend but 

rather whether the populations will tend to specific numbers or whether they will oscillate. Another 

example is whether a cell has the capacity to shift its production of a protein from low to high levels 

(known as a “biological switch”) or if on the contrary the protein production will always tend to a 

unique level. These questions about qualitative changes are of great importance for biologists. 

Content of the New Course 

The approach in our course is to start with important questions about biological systems and then 

develop the mathematical concepts necessary to answer these questions. We begin the course by 

having students consider a simple predator-prey system (called the “shark-tuna” system) and ask 

them to predict the future evolution of the two populations. It becomes quickly clear that to make 

sensible predictions one needs a mathematical model. The next step is thus to learn how to write 

models for dynamical systems. With this approach it is the biology that genuinely motivates the 

introduction and study of mathematical concepts. Moreover, we can underline from the beginning 

the importance of focusing on the biological meaning of the equations of a model (and of the other 

mathematical concepts we introduce) rather than seeing them as abstract mathematical objects. 

Building Models 

We begin by having students learn how to write mathematical models. To this end students learn 

that equations describe how a system changes with time. Since at this point in the course we have 

not yet introduced the concept of derivative, the differential equations of a model are presented and 

thought of as “change equations”. For example, in the shark-tuna model, where T is the number of 

tuna and S the number of shark, we think of T’ as the change in the number of tuna and of S’ as the 

change in the number of shark. We learn that equations are composed of terms representing inflows 

and outflows (what makes the variable “go up” or “go down”). For instance, we learn that the 

shark’s birth rate is bSS (an inflow) and its death rate dS S (an outflow). Importantly we learn why a 



 

 

shark-meets-tuna encounter is modeled by cST. This idea of modeling an encounter by multiplying 

the variables together is then used in many other models we study such as epidemiological models 

(where a susceptible individual encounters an infected individual) or chemical reaction models 

(where a sodium molecule encounters a chloride molecule). 

The equations of a model are treated geometrically. For any time t the values of the variables can be 

represented as a point in the state space, which is the space containing all possible values of the 

variables. To each point in the state space, there is a corresponding “change vector” given by the 

change equations, in other words we have a vector field. For example, in the shark-tuna model to 

each point (T, S) corresponds a change vector (T’, S’). We then learn that through each point in the 

state space passes a trajectory (the solution of the differential equation) and that change vectors 

provide the direction of the trajectory. Finally, we study Euler’s method as a way to find the 

(approximate) trajectory starting at a given initial condition. When looking at trajectories we 

underline what they correspond to biologically (e.g., a population increasing or decreasing). 

Derivatives and Integrals 

At this point in the course, we introduce the concept of derivative. We define the derivative as the 

instantaneous rate of change of a function. We show how the derivative is equivalent to the slope of 

the tangent line to the function. We then put a great emphasis on thinking of the derivative as (the 

slope of) the linear approximation to the function at a point. The reason for this emphasis is that it 

naturally leads to the linear stability analysis of equilibrium points. While we review differentiation 

rules and verify them with some examples, we do not prove them. We introduce integrals as the 

limit of the Riemann sum and focus on the idea that the integral represents “the area under the 

curve” of a function. We study the Fundamental Theorem of Calculus as a way to connect the 

notions of derivative and integral. We do not study techniques of integration. 

Long-Term Behaviors of Systems 

After having formally introduced derivatives and integrals, we tackle the fundamental question of 

the long-term behavior of a system. Together with the study of qualitative change (see below), this 

is really the central part of the course. We investigate biologically-important questions such as: 

Does a population need to go above a certain threshold to survive in the long term? Will two 

competing populations coexist in the long run or will one of them go extinct? Does a cell possess a 

biological switch, which is the ability to “turn on or off” the production of a protein? To answer 

these questions, we introduce the concepts of equilibrium point and stability. Students learn to 

determine the stability of equilibrium points using linear stability analysis in one dimension and 

nullclines in two dimensions. Crucially, we learn how to translate biological questions in terms of 

equilibrium points and trajectories, and then interpret insights in biological terms. 

Bifurcations and Oscillations 

Studying biological systems’ long-term behaviors naturally leads us to consider the all-important 

notion of qualitative change. Mathematically, a qualitative change is a bifurcation, which is a 

change in the number of equilibrium points or in their stability. Studying bifurcations using 

bifurcation diagrams enables us to explain important biological phenomena such as the sudden drop 



 

 

of vegetation cover in shallow lakes (Scheffer et al., 2001).  Our study of bifurcations includes the 

notion of Hopf bifurcation, which corresponds to the emergence or disappearance of oscillations in 

a system. Oscillatory processes are widespread in biology and medicine, simple examples include 

body temperature or blood glucose level. By studying Hopf bifurcations we can explain why the 

level of certain hormones oscillate with time or why a heart failure can cause a patient to have the 

abnormal oscillatory breathing pattern called Cheyne-Stokes respiration. 

Impact on Success in Subsequent Courses and Concluding Remarks 

One question that naturally arises with this new curriculum is whether students are well prepared 

for subsequent science courses. Using multi-linear regression models, Sanders O’Leary et al. (2021) 

observed that taking the new Calculus for Life Sciences course compared to the “traditional” 

Calculus for Life Sciences course increased predicted grades in subsequent chemistry, life sciences 

and physics courses. 

Our experience at UCLA provides an example of how one can revise the curriculum of a calculus 

course in order to make it more strongly aligned with how biologists understand and use calculus 

concepts. One question that arises is the impact of this curriculum on student learning. We argue 

that focusing on dynamical systems and bifurcation theory provides a very fruitful framework to 

deeply connect biology and calculus. Using the concepts of trajectory and vector field, we are able 

to take a modern approach that corresponds to the practice in biology.  
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INTRODUCTION AND THEORETICAL SECTION 

This research is a result of an investigation into the difficulties students have in learning the 

derivative concept and working on unveiling several origins that hinder the process of 

conceptualization. We identified the constraints that prevent them from understanding the 

concept definition of a derivative at a point and from having adequate concept images of this 

complex notion. These difficulties have several origins, they are of epistemological origin, they 

originate from the mathematical objects themselves and from the ways of presenting them in 

textbooks. In this article, we provide a glimpse into how this concept is introduced in textbook 

and how students articulate their knowledge of mathematics and physical sciences when 

confronted with it. The most prominent claim around which our study revolves is concerned 

with the fact that: the interpretation of the derivative as an instantaneous rate of change to the 

students plays an essential role in strengthening their concept images. In the Tunisian context, 

the concept of derivative is introduced as an instantaneous speed for the first time in the third 

year of secondary school (17-18 years). This concept is introduced by the instantaneous speed 

which is already known by students in courses of physics. Indeed, there is no doubt that this 

approach is closely related to the subject being taught (i.e. derivative concept) but is there really 

nothing that prevents students from understanding it through this approach? From this 

perspective, we wonder whether this approach is sufficient to make a strong conception for the 

students or not? Do they really properly understand the meaning of the instantaneous speed? 

Are they really aware of the relationship between the rate of change and the derivative at a 

point? Do they know that derivative is an instantaneous rate of change? Thought on the 

epistemological aspects of the derivative concept and the various notions associated with it 

raises a number of inquiries that must be addressed, including the ways of presenting this 

concept in textbooks as well as the students' conceptualizations of the derivative and the notions 

related to it. Indeed, we wanted to analyse institution choices in introducing derivative at a point 

and their relationship to students' understanding of derivatives. Therefore, we relied on 

Praxeology (Chevallard, 1999) and images frame (Tall &Vinner, 1981) to model derivative 

institutional organisation into several mathematical activities and analyse concept images that 

students have in regards to the notion of the derivative and some other related terms. By using 

these frames, we know the different difficulties learners have and the origins of these difficulties 

occurring when learning this concept. 

EMPIRICAL SECTION 

When launching our journey into reviewing the official program text of Mathematics for the 

third-year secondary school, we found that one of the primary guidelines in the curriculum is 

for students to grasp that the derivative at a point is the slope of the tangent to the curve. There 

is also a note stating that the instantaneous velocity notion could be used as an example for 
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introducing the derivative. The derivative chapter of the official mathematics textbook begins 

with two activities concerning the concepts of speed and instantaneous speed, both of which 

contain the formal definitions of these notions as previously defined in physics courses: average 

speed is defined as a distance divided by time, and instantaneous speed is defined as the limit 

of the average speed. These concepts are considered simple calculations rather than specific 

instances of the rate of change. In first-year secondary school physics textbooks, the average 

speed is introduced by the notion of ‘rapidity’ to compare the speed of two movements, by 

identifying as follows:“the rapidity notion is characterized by a quantity depending on the 

length of the path traveled and the duration of the path; this quantity is called average speed. 

Then the average speed of a mobile is equal to the ‘quotient’ of the distance ‘d’ travelled by the 

mobile by the duration ‘t’ of the journey, Vmoy = d/t”. Indeed, these first two activities are 

followed by an activity related to the geometric interpretation of the derivative concept. These 

three successive activities are followed by the definition of the derivative concept and the 

equation of the tangent to the curve as a consequence of the differentiability of the function at 

a point without any further explanation. It should be noted here that the introduction of 

derivative does not focus on precise or formal definition of the rate of change, only its algebraic 

expression is used to talk about derivative notion. It is worth mentioning here that the definition 

of the rate of change is not found in all textbooks (mathematics and physics) of each grade level 

of high school. Only the algebraic expression of this concept is indicated whenever it must be 

used without presenting it as an independent concept. For instance, in the chapter on the 

derivative of a function, one exercise touches upon the notions of production rate and 

instantaneous rate of production, giving their definitions to calculate them and determine the 

behavior of the function. Furthermore, according 

to the praxeological analysis (table 1), 

mathematical activities related to the derivative 

in the Tunisian curriculum mostly entail 

algebraic and algorithmic activities, rule 

applications, or well-known techniques. As a 

result, the research demonstrates that the 

institution's purpose is to assist students in 

learning algebraic abilities with the derivative 

concept.                                                                  Table 1: all the type of tasks, which are in work in the curriculum 

Obviously, the lack of familiarity with the notion of the rate of change in physics and 

mathematics courses would be the gap and the constraint that prevents students from 

understanding the derivative concept. The instantaneous speed is considered a direct application 

of the derivative concept, both of which are defined abstractly. Therefore, we anticipated that 

students’ difficulties would lie in the articulation of knowledge from physical sciences and from 

mathematics.   

At a later stage, to gather complement information illustrating the problem, we conducted an 

interview (with 30 students from Pilote School Kairouan) and a questionnaire highlighting 

students’ images (the questionnaire was completed by 166 students of the third year of 



secondary school from various secondary schools) about derivative notion. The structure of 

questionnaire is far from numerical and direct applications as we only need to figure out how 

they have conceptualized the notion of derivative and we need to focus on the functional 

thinking of students about it. In the first question, we tried to put the student in the general 

frame with a theoretical question as we asked for the formal definition of the derivative at a 

point ‘a’. The result suggests that the formal definition of this concept is known and the reliance 

on graphical representation as a definition of the concept. Then, we asked them about what 

comes to their mind when they hear the word derivative and about whether they have something 

in mind that links the concept of the derivative to any object in real life. The results show that 

the graphical representation, the formal definition, the derivative of particular function, the 

monotonicity and the extremum of function are the main representations in regards to the notion 

of the derivative. Furthermore, it shows that the graphical representation represents their most 

main representation of this concept. While the instantaneous speed and the acceleration account 

for only a very small minority of the answers. As for the link between the concept of the 

derivative to any object in real life the results suggest that a small minority of participants 

identify the instantaneous speed and average speed along with identifying the courses of 

mechanics and chemistry and other courses as areas in which they applied this concept. As for 

sixteen percent of participant stated that they have no idea and others stated that there is no link 

between this concept and real life and this result reflects the misunderstanding of students about 

this concept and their uses of it are limited to mere direct applications. Following that, we asked 

students what is the rate of change of a function defined on an interval I, and the results suggest 

that the majority of students do not know the definition of the rate of change of a function over 

an interval although they know the definition of the derivative at a point. We discovered that 

9% of them believed that the rate of change of a function 'f' between two input values is the 

difference between two function's output values, so they confused the rate of change of a 

function 'f' with the amount of change of the function values (the change in the output values). 

We followed this question by an exercise containing two interlinked questions on Hooke’s Law. 

This situation is well known by the students, they have already studied it in mechanics courses, 

and they used it before in mathematics courses. We gave them the force-deformation curve 

which is a straight line passing through the origin in order to solve the questions and we asked 

them in the first question to determine the rate of change from the graph of the applied force F 

as a function of displacement x. Just 9 students recognized that the rate of change had to be 

interpreted as the slope, using the short specific formula for computing the slope of a 

proportional function, and they were among those who already knew what rate of change 

definition. Then we ask a subordinate question about the spring constant k. Only five percent 

of the participants linked this question with the first question. Eighty-three percent of students 

responded to this question but they did not connect the two questions and all of them used the 

particular short formula of computing the slope of proportional function. These results suggest 

that the majority of students (ninety-five percent) fail in making a correspondence between the 

rate of change and the slope. The results insure that the students know that the constant ‘k’ is 

the slope of the linear graph and this means that in terms of the law of physics and direct 

application of slope of proportional function they have no problems but the problem lies in 



making the correspondence between the rate of change and the slope. This means that they are 

already familiar with the concept of slope but it is not the case with the concept of rate of 

change. This result assures that the notion of rate of change is not well-assimilated and the 

students cannot interpret the rate of change graphically.  

By looking at a car’s speedometer at any instant, one can know the instantaneous speed of a 

car, and this idea should be adopted by all the students but the survey found that the majority 

of students answered by the average speed. The result suggests that the students confuse the 

instantaneous speed with the notion of the speed and not all students have access to the fact that 

the speedometer is an instrument that measures and displays the instantaneous speed of a car. 

The results of the question, which is about the connection between the rate of change and the 

speed, indicated that only one-third of students understand that the speed is a special case of the 

rate of change interpretation. This misunderstanding is due by and large to the lack of familiarity 

with the notion of the rate of change. As well as, they get used to define speed as a distance 

divided by time and they do not get used to define it as a rate of change. Thus, this result also 

assures that the notion of the rate of change is not well-understood. 

The interview also allows us to conclude that students do not have a strong concept image of 

the concept of the derivative. It shows the fragmented image they have about it. They only can 

relate it to direct applications on physics or mechanics. This accounts for the fact that the student 

regards the derivative as a tool they can work within the other discipline. Even when the 

students were asked what does the speedometer in a car measure, they were reluctant and 

hesitant between whether the measure was instantaneous velocity or average velocity and they 

were unable to justify their answers in both cases. In this case, we intervened with an insight 

about the derivative and the rate of change and asked about what connection they have between 

each other and how we would use them in relation to velocity. But even with this insight, they 

remained clueless as, from the beginning, they cannot think of these terms as puzzles of a 

greater image but think of them as independent terms with no connection between each other; 

which again accounts for the distorted image they have in their minds about the derivative 

concept and the terms that relate to it. Thus, the results assure that the notion of the rate of 

change, which is closely related to the notion of the derivative is not well-assimilated and well-

understood. Not only that, due to this misunderstanding, we can conclude that the notion of the 

derivative at a point is not well understood either and the students have not a strong concept 

image about the physical notions which are closely related to the concept of the derivative. 
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Abstract 

In this paper, we carry out a comparison between physical explanations presented in different 

disciplinary-based resources that can be consulted by high school physics and mathematics 

teachers to design their lessons. The goal of the analysis is to figure out some specificities of 

explanations exploiting concepts and methods of Calculus compared to other choices for 

mathematization in physical modelling. We focus on the case of motion, that is a relevant context 

for Calculus, also from a historical point of view. The core methodology of the study is a qualitative 

analysis of excerpts of texts, with the lens of Habermas’ rational behavior developed as an 

analytical tool for mathematics education, exploiting the distinction between different mathematical 

rationalities related to different mathematical domains, extended to the case of physics. The 

integrated analysis aims to connect the mathematical domains involved in the mathematization and 

the kind of scientific explanation presented in different resources. As we will show, the analyses 

showed differences between the rationality of different explanations in different kinds of resources 

in excerpts concerning the same topic and showed epistemic, teleological and communicative 

differences between scientific explanations involving different mathematical domains.  

Goal and background of the study 

In this paper, we carry out a comparison between different disciplinary-based resources that can be 

consulted by high school physics and mathematics teachers to design their lessons in order to figure 

out some specificities of explanations exploiting concepts and methods of Calculus compared to 

other choices for mathematization that can be made in physical modelling. In this work we focus on 

the case of motion, that is a relevant context for Calculus, also from a historical point of view.  

The main ideas of this work arose from results of a previous study (Branchetti, Cattabriga, Satanassi 

& Levrini, in press) about a comparison between proofs of the fact that the trajectory of motion of a 

projectile is parabolic in an historical text by Galilei (1638, reference can be found in ibid., in press) 

and a physics textbook for high school. The authors analysed the excerpts using the lens of 

cognitive unity and compared them in terms of continuity and rupture between argumentations and 

proofs in the two texts. From the analysis it emerged that the textbook had much more elements of 

rupture and that, as long as algebraic rationality appeared in the text - generalization, use of 

symbolic expressions of laws, search for a solution of a system - the structure of the explanation 

changed in a significant way. Moreover in the text different mathematical domains coexisted, but 

rarely efforts were made to pursue cognitive unity when mathematics appeared in the explanations 

and to intertwine both mathematical rationalities and mathematical and physical explanations 

(Boero, Morselli & Guala, 2013).  

The sudden change of rationality of the product during the explanation can interrupt the reasoning 

and result in strong difficulties to follow the argument, in particular in students not used to 

articulating different rationalities at the same time. In the case of the historical textbook we 

observed a much more careful choice in terms of mathematization and more unity between 

mathematical proof and scientific argumentation, thanks to the use of Euclidean geometry to 
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mathematize the problem and the consistent rationality used to carry out the proof (Branchetti et al., 

in press). However, Galileo’s proof has been discussed a lot both from a mathematical and physical 

point of view, e.g. because of its generalization strategy from horizontal velocity of the motion of 

the projectile before combining it with an accelerated vertical motion to all the possible cases (not 

stating the law of inertia in a general form) or the controversy about the paternity of the proof with 

Cavalieri (Drake & MacLachlan, 1975).  

Leaving aside the debate itself, it is very interesting to compare different proofs and explanations, 

reflecting also on the choices made (and possible at that time!) in terms of use of mathematical 

rationality in physical explanations. Indeed, a crucial difficulty shown by research in physics 

education, that is often simplified as the difficulty in the use of mathematics in physics, does not 

really mirror the complexity where students can feel trapped and lost, that often have a lot to do 

with structural rather than instrumental role of mathematics in physical modelling (Udhen, Karam, 

Pietrocola & Pospiech, 2012). Moreover, the analysis of textbooks shows that a lack of awareness 

about the intertwining between rationalities can result in presentations of physical explanations 

where mathematics interrupt the flow of reasoning rather than strengthening, generalizing, 

formalizing it, as it is reasonably expectable.   

We considered it particularly interesting to investigate such an issue in particular analysing 

historical or contemporary resources where Calculus is gradually introduced, not only as a tool  but 

as a mathematical new theory with its own specific, even evolving, epistemology and rationality. 

By comparing similar and different explanations, extending the analysis also to other key cases of 

motions, it is possible to search for specificities of Calculus-based explanations in physics. 

The main research questions we address in this paper are: 

RQ1: Are there patterns in terms of rationality in Calculus-based explanations related to motion in 

different resources for mathematics and physics teachers (mathematical or physical historical texts, 

essays, manuals, textbooks) that allow us to characterize the main features of such explanations in 

the case of the physical study of motion from a cinematic and dynamics point of view? 

RQ2: Are there significant differences between different resources for teachers? If so, are they 

depending on the discipline (mathematics or physics), on the target (scientific community, 

university, high school teachers, students, …) or on other variables related to the intertwining 

between mathematical and physical rationalities of the choices made for the particular explanation? 

Theoretical framework 

The theoretical construct of rational behavior was adapted to mathematics education in Morselli and 

Boero (2009) for the analysis of students’ discursive practices, especially in the conjecturing and 

proving process. According to the authors, the rational behavior consists of three deeply interrelated 

dimensions: we talk about epistemic rationality when actions acted by an agent are consciously 

validated and shaped according to a theoretical framework and to reasoning rules shared by the 

community; we talk about teleological rationality when actions acted by the agent are consciously 

chosen aiming at reaching goals of the activity; we talk about communicative rationality when 

communicative means used by the agent to share results are adequate to that of community. In the 

disciplinary transposition that is generally carried out in schools, in mathematics an artificial 

internal division emerges that separates it into the domains algebra, geometry, analysis, statistics 

and so on (Boero et al., 2013). The artificial introduction of algebra as a separate field from 

geometry and other areas of mathematical knowledge implies that students have difficulty using 

algebraic language in proofs, thought mainly in secondary school as a domain of synthetic 

geometry, leading to a radical change in the forms of rationality moving from geometry to algebra.  



 

 

For what concerns scientific explanations we will refer to Braaten & Windschitl (2011), who 

stressed that “from a philosophical perspective, there are many ways of conceptualizing scientific 

explanations, all of which can be relevant for research and practice in science education.” (ibid., 

2011; p. 3) and analysed in depth five models of scientific explanation from the point of view of 

their epistemic relevance and their role in science education: 

- Covering Law (deductive arguments explaining events as natural, logical results of regularities 

expressed by laws; merits depend on logical coherence of the argument showing an event to be the 

expected result of a natural law) 

- Statistical-Probabilistic (Induction from a trend or pattern in data may or may not seek underlying 

causes for events; merits of explanation depend on degree of coherence between explanation and 

data) 

- Causal (Induction from patterns in data, but explicitly seek underlying causes for events; merits 

depend on coherence with data and on degree of confidence in establishing causation) 

- Pragmatic (Relies on shared agreement about the “contrast class” inherent in the why-question: 

Why is this (and not that) the case? Attributes negotiated and deemed acceptable by participants in 

conversation; varied assumptions about contrast class may cause disagreement about what makes a 

satisfactory explanation) 

- Unification (Explanations for singular events are unified into generalizations through use of major 

theories in science; merits depend on degree to which an idea connects otherwise disconnected 

phenomena and coheres with other accepted explanations in the ‘explanatory store’). 

Methodology 

The core of the study is the analysis of excerpts of texts, that are chapters of different resources for 

teachers, with the lens of Habermas’ rational behavior developed as analytical tool for mathematics 

education (Morselli and Boero, 2009), adapted to the case of interdisciplinary analysis of physical 

resources by Pollani, Branchetti & Morselli (2022). We rely on the distinction between different 

mathematical rationalities related to different mathematical domains (Boero et al., 2013), but we 

extend the notion of rational behavior to the case of physical rationalities related to explanations 

and analyse the intertwining between mathematical and physical rationalities searching for 

specificities in the case of Calculus-based rationality in physical explanation related to motion.  

The resources have been analysed as examples of prototypical presentation of physical explanations 

where mathematics plays a role and are meant as cultural or institutional crystallized products that 

can be consulted by high school teachers to prepare a lesson. With this respect they are considered 

resources relevant to teaching, and not teaching resources. The process of designing and 

implementing a lesson plan is of course much more complex and depends on several variables (the 

teacher in primis) that are not considered in this paper, so we are not drawing conclusions about the 

way teachers effectively use such resources in their classrooms. The analysis is mainly 

epistemological and concerns the choices made by the authors of such resources considered as 

rational agents within a precise context - a scientist referring to a scientific community in the case 

of historical sources, the textbooks’ authors addressing a text to high school teachers and students as 

targets of their communication.  

Consistently with the framework, we characterize the different explanations in terms of 

mathematical and physical epistemic, teleological and communicative rationality (Boero and 

Morselli, 2009). The integrated analysis aims to connect the mathematical domains involved in the 

mathematization and the kind of scientific explanation presented in different resources.  



 

 

Data analysis and discussion 

A corpus of resources has been analysed ranging from Newton’s main historical sources, to books 

addressed to teachers about the history of infinitesimal - in particular differential - Calculus and 

history of physics to manuals and textbooks. During the conference we will show some examples of 

analyses and compare them in order to provide our first answers to the research questions. As we 

will show, the analyses showed differences between the rationality of different explanations in 

different kinds of resources, even in excerpts concerning the same topic, and showed epistemic, 

teleological and communicative differences between scientific explanations involving different 

mathematical domains.  

We present here just two interesting aspects that emerged. At the epistemic and communicative 

level there are differences in the formulation of the axioms, in the role of the examples and in the 

structure itself of the explanation and of the mathematical aspects of the physical proof depending 

on the mathematical rationality adopted. The use of graphical representations, for instance, is 

slightly different in Galileo’s and Newton's approach, and in textbooks: some adopt a synthetic 

point of view, others a Cartesian, others an analytic point of view; in the textbooks we can find a 

mix of different uses of graphs where the use of such tools in the reasoning is often not explicitly 

declared and clarified. From the point of view of the teleological dimension of rationality, it is 

interesting to observe the Calculus-based explanation that describe and analyse phenomena relying 

mainly on functions are more likely to encourage, or even implicitly assume, a covering-law 

teleological attitude towards explanation (e.g. the goal pursued is to find the law that phenomena is 

expected to obey to). Such results, even preliminary, allowed us to characterize such explanations in 

the case of motion, but we aim at extending the investigation to other physical topics, reflecting also 

on the dependence on the physical theories within which the explanation is developed. 
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Introduction  

Concepts of calculus play an important role in many study programs, for instance, STEM-programs, 

but also economics. However, the way these concepts are used in the corresponding disciplines 

sometimes differs from how they are treated in calculus courses for students of these disciplines 

(González-Martin, 2021; Hitier & Gonzáles-Martin, 2022). Sometimes, there are even discrepancies 

between the way mathematical concepts are understood and taught in mathematics and the way they 

are used in other disciplines, which can make it hard for students to make a connection between 

these two issues (Feudel & Biehler, 2022). Therefore, it is important to investigate how 

mathematical concepts are used in other disciplines, and which knowledge related to these concepts 

can help students understand this usage. 

I explored this issue in my PhD-project for the derivative and its usage in economics, and found that 

– from a cognitive perspective – economics students need a broad knowledge of the concept for 

being able to make sense of the material in basic economics textbooks (Feudel, 2019). This led to 

the question of whether one can systematize this knowledge into “blocks” that are used commonly. 

I therefore analyzed the textbooks once again – now from a perspective that compartmentalizes 

knowledge into units and which highlights that knowledge is institutionally situated – to find an 

answer to the question: What pieces of knowledge related to the derivative are commonly used in 

basic economics subjects?  

Theoretical framework 

I used the Anthropological theory of the didactic (ATD) by Chevellard (2019) for this analysis. 

According to the ATD, knowledge is considered as a relation between people and certain objects. 

This relation evolves through activities with these objects within certain institutions. For analyzing 

such activities, the ATD introduces the notion of praxeology, which is the basic unit of such 

activities. A praxeology consists of four parts: 1) a type of task that needs be handled,  

2) a technique for handling the task, 3) a technology that explains and justifies the technique, and  

4) a theory that justifies the technology. The emphasis in this paper lies on the technologies used in 

basic economics subjects, as these are essential for gaining an understanding of the used techniques.  

Methodology 

I analyzed two basic economics textbooks that are widespread in Germany: the book “Introduction 

to general business administration” by Wöhe and Döring (2013) – a standard reference for business 

administration courses, and the book “Basics of microeconomics” by Varian – a standard reference 

for basic microeconomics courses. Of the latter, there also exists an international version in English 

(Varian, 2014), which I used for the analysis presented here, so that no extra translation is needed.  



 

 

I analyzed all the book chapters containing the derivative with a two-step method used by Vom 

Hofe (1998) in a study on students’ conceptions of limit. This method discriminates consequently 

between description and interpretation, so that the genesis of the results can be clearly reconstructed 

by others. In a first step, the description level, I described the content of each paragraph involving 

the derivative precisely. In the second step, the reflection level, I tried to identify the praxeologies 

or parts of such that can be found in the paragraph. I will also present the results this way here. 

Some results of the textbook analysis 

In this paper, I want to present two examples illustrating that the textbooks analyzed basically rely 

on three different technologies when explaining techniques used. The first example is from Varian 

(2014) from the chapter “profit maximization”, and is generic for other optimization tasks as well.  

Description level: Varian illustrates how maximal profit can be determined by looking at a firm 

using two inputs 1x  and 2x  to produce an output y  via a production function 1 2, )(f x xy =  (p. 371). 

He first looks at the case that 2x  is fixed at a level 2x  (the case that 2x  varies is discussed later). If 

iw  denote the prices for the inputs and p  the price for the output, the following expression needs to 

be maximized with respect to x1: 1 2 1 1 2 2, )(p xf x xx w w − − . Varian then states that the profit 

maximizing input *

1x  fulfills the equation *

1 1 2 1( , )p MP x x w =  in which 
1MP  denotes the marginal 

product of good 1 that he had defined as the derivative of the production function with respect to 1x  

earlier. He derives the equation *

1 1 2 1( , )p MP x x w =  via the first order condition 
*
1 2

1

( , )

1 0
f x x

x
p w




− = .  

Reflection level: Varian proposed using the equation *

1 1 2 1( , )p MP x x w =  as a technique to find the 

profit maximizing input 
*

1x , and used symbolic techniques involving the derivative (differentiation 

rules and first order condition) as technology for justifying this equation.  

Description level: He then explains in a second way why this equation must be valid at the optimal 

input 
*

1x . If you add a little more of factor 1 (
1x ), you produce 

11 xMPy =   more output that is 

worth 1 1MP xp   . But this output costs 
1 1w x  more to produce. If the value of 1 1MP xp    does 

not equal the costs 
1 1w x , the profit can be raised by increasing or decreasing input 1, and then 

*

1x  

was not the optimal input. Hence, 1p MP  needs to be equal to the price 1w  at the optimal input. 

Reflection level: Here, Varian used a second technology to explain the equation 
*

1 1 2 1( , )p MP x x w =  

at the profit maximizing input. It utilized the context and relied on an economic interpretation of the 

derivative 
11

f

x
MP




=  as a rate of change – used to examine the effect of small changes in the input. 

Description level: Finally, Varian derives the equation 
*

1 1 2 1( , )p MP x x w =  also with a graphical 

method. For this, he expresses the output y  that yields the profit   as a function of the input 1x  via 
2 1

2 1

w w

p p p
xy x += + . For each profit  , this expression describes a line, and as   varies, one gets a 

family of parallel lines, so-called isoprofit lines (see Figure 1). Since only outputs given by the 

production function 1 2( , )y f x x=  can be practically realized, the maximal profit is given by the line 

that just “touches” f  as a tangent. Hence, at the optimal input, the slope of the corresponding 

isoprofit line ( 1w

p
) must be equal to the slope of the production function, which yields 1

1

w

p
MP = . 

Reflection level: Varian finally presented a third technology for deriving the equation 
*

1 1 2 1( , )p MP x x w =  for the profit maximizer. It is based on graphical methods, and relies on the 

geometric interpretation of the derivative 
1MP  as slope of the production function.    



 

 

 

Figure 1: Graphical method to derive the condition  for maximal profit (p. 373) 

The second example I want to present here, which is also from Varian (2014), shows that the three 

technologies just illustrated may also be intervened. This example is about marginal cost, and 

illustrates how relationships between different quantities are explored and derived in economics.  

Description level: Varian defines marginal cost as a rate of change (p. 402): ( ) dc
dy

MC y = , whereby 

( )c y  is the cost in dependance of the output produced. He then argues that when interpreting 

( )MC y , dy  is often considered as one, so that the marginal cost is interpreted as the cost of the 

next unit. If the good does not need to be discrete, he wants to think of marginal cost as a derivative, 

and always uses the derivative to determine marginal costs or to illustrate ( )MC y  as a curve.  

He then derives how the marginal cost curve is related to other cost curves, in particular the average 

variable costs ) / )( () ( vA y c yVC y= , ( ) ( )v y c y Fc = −  if F  are the fixed costs. He first mentions 

that both curves approach each other for 0y →  because 
(0) ( )

0

( )

0 0
lim ( ) lim limv v vc y F c c

y y
y

F

y

y

y
MC y

−+ −

→ → →
= = .  

Reflection level: He used limits and a symbolic representation of ( )MC y  as the rate of change of 

the costs ( )c y  as technology to justify the relationship between ( )MC y  and ( )AVC y  for 0.y →  

Description level: He then considers ranges of the output in which the average variable costs AVC 

are decreasing, and argues that the marginal cost curve must lie below the AVC-curve in these 

ranges. He justifies this relationship using an economic context first. As long as the AVC are 

decreasing, the cost of each additional unit must be less than the average, because “to make the 

average go down, you have to be adding additional units that are less than the average” (p. 403). 

Reflection level: Varian used the common economic interpretation of the derivative ( )MC y  as cost 

of the next unit to explain the relationship between ( )MC y  and ( )AVC y  if the AVC are decreasing. 

Description level: Varian then derives the relationship also symbolically. He argues that, since the 

AVC-curve is decreasing, the derivative of ) ) /( (v yA y c yVC =  needs to be 0 . He then derives 

with the quotient rule the relationship ( ) ( ( ) / )'v vy c yc y , which implies that ( ) ( )MC y AVC y . 

Reflection level: Varian explained the relationship between ( )MC y  and ( )AVC y  if the AVC are 

decreasing in a second way by using symbolic techniques and the connection between the sign of 

the derivative and monotonicity that relies on the geometric interpretation of the derivative as slope.  

Description level: Varian then justifies economically again, why the marginal costs need to be 

above the average variable costs (AVC) if the latter are increasing, and that both costs are equal at 

the minimum of the AVC. Finally, he presents a diagram with both cost curves and the average cost. 



 

 

Conclusion and discussion 

In the books analyzed, basically three aspects of the derivative appear commonly – especially in the 

technologies explaining the techniques used. These are: 1) a geometric interpretation of the 

derivative as slope that often occurs in graphical approaches used to illustrate relationships between 

economic quantities or to determine optima, 2) an economic interpretation of the derivative that is 

commonly used to derive relationships between economic quantities with contextual arguments, and 

3) techniques for working with the derivative on the symbolic level, e.g., differentiation rules or the 

first order condition that are often used to solve optimization problems analytically. 

This shows that – differently from what González-Martin (2021) found for engineering – symbolic 

techniques taught in calculus courses for economics students also often appear in basic economics 

textbooks. But two further aspects of the derivative also occur frequently: a geometric interpretation 

as slope and an economic interpretation. These are not only used for illustration or for interpreting 

results in the context, but also for explaining and deriving relationships between different economic 

quantities. Hence, it is important to emphasize these two aspects of the derivative more in calculus 

courses for economics students – also within reasoning – for providing the students with knowledge 

of the derivative that really helps them to make sense of the content of their major subjects. 
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Because life science students are historically outperformed by their peers in calculus (Eaton & 

Highlander, 2017), many colleges and universities now offer a discipline-specific calculus course, 

with core calculus concepts motivated by and contextualized within life sciences (e.g. see Luque et. 

al., 2022). Because motivation can improve student engagement (Akbuga & Havan, 2022), a 

‘biocalculus’ theoretically should improve performance outcomes for biology majors. However, 

preliminary evidence indicates this curriculum is not effective at improving life science students’ 

academic performance (Eaton & Highlander, 2017; Luque et al, 2022). To investigate, we will 

compare a biocalculus to a business and standard curriculum. Because textbooks are a near 

universal course component that mediates teaching (Mesa & Griffiths, 2011), we will use textbook 

analysis to explore structural differences in presenting a core concept of calculus: the derivative. 

Our research question is: How do discipline-specific calculus textbooks develop the definition of the 

derivative compared to a general calculus text? Our corpus is Calculus: Early Transcendentals, 

eighth ed. by Stewart (2016), which is typically presented to math, engineering, physics, and 

chemistry majors; Calculus for Business, Economics, and the Social and Life Sciences, brief tenth 

ed. by Hoffmann & Bradley (2010); and Calculus for Biology and Medicine, fourth ed. by 

Neuhauser & Roper (2018). We refer to these texts as CALC, BUSCALC, and BIOCALC, 

respectively.  

Narrative Analysis   

To compare how the three texts present the definition of the derivative, we conducted a narrative 

analysis using the graph framework developed by Weinberg, Wiesner, and Fukawa-Connelly 

(2016). In brief, narrative analysis is a technique borrowed from literature studies that considers the 

sequence of ideas and how earlier items influence and shape the presentation of later concepts. We 

coded the following key ideas in the presentation of the definition of the derivative: A. secant lines 

limiting to a tangent line, B. formula for the slope of a tangent line, C. instantaneous velocity at a 

point, D. derivative at a point, E. instantaneous rate of change at a point, and F. the derivative 

function. In Figure 1, a solid arrow indicates that the tail idea was utilized in presenting the idea at 

the head of the arrow. A dashed arrow represents an imprecise motivation rather than an explicit 

linking of ideas.  

 

 Figure 1: Narrative graphs for the definition of the derivative in each text 
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The graphs reveal that narratively, BIOCALC and BUSCALC were quite similar, painting a 

motivating picture before beginning their rigorous discussion with the definition of the derivative 

function. From this function starting point, the reader is then shown numerous “applications” of the 

derivative. On the other hand, the CALC text assembles the derivative function by piecing together 

the point-wise derivative and directly links the concept of slope of a tangent line, instantaneous 

velocity, and the derivative at a point.  

Network Analysis 

To analyze the development of the definition of the derivative in each textbook, we constructed a 

directed graph, or digraph, in yEd (Version 3.22, yWorks GmbH) as follows: the vertices of the 

digraph are mathematical objects (concepts, definitions, theorems, examples, and exercise types) 

organized into four groups ordered from left to right: Prior Knowledge (not in the text),  

Prerequisites (in the text), Section (introducing the limit definition of the derivative), and Exercises 

(for the section). Draw an arrow from one vertex, x, to another vertex, y, if x is required to learn y.  

        

Figure 2: Development of the definition of derivative in BIOCALC 

Figure 2 shows the digraph for BIOCALC’s development of the definition of derivative. For clarity, 

the vertex corresponding to the definition of the derivative is bolded in black and all arrows from a 

prior knowledge vertex to an in-text vertex are colored blue. Digraphs were also created for the 

other two textbooks, but we omit them here due to space restrictions. These will be included in 

future work, which will also include a larger corpus and more rigorous analyses. 

Visual Inspection 

Initial visual inspection of the digraphs revealed that CALC required the most prior knowledge not  

in the text (see Table 1). However, BUSCALC required the most prerequisite knowledge in the text. 

This is because many of the concepts included in BUSCALC were assumed to be prior knowledge 

in both CALC and BIOCALC.  BIOCALC had the least number of concepts presented in the 

section covering the definition of the derivative as well as the least variety in types of exercises. 

Since a goal of discipline-specific calculus is to apply calculus concepts to other disciplines, we 

analyzed each textbook’s attention to application problems by computing the proportions of 

example problems and exercises pertaining to applications (App.) in each textbook’s section on the 

definition of the derivative (see Table 2). 

 



 

 

Textbook 
No. of Prior Knowledge 

Vertices 

No. of Prerequisite 

Vertices 

No. of Section 

Vertices 

No. of Exercise 

Vertices 

CALC 13 16 16 17 

BUSCALC 8 20 15 12 

BIOCALC 10 10 8 8 

Table 1: Prior knowledge, in-text prerequisites, section concepts presented, and exercises pertaining to 

the definition of derivative 

Textbook 
No. of App. 

Examples 

No. of 

Examples 

App. 

Examples 

Prop. 

No. of App. 

Exercises 

No. of 

Exercises 

App. 

Exercise 

Prop. 

CALC 3 7 43% 20 61 33% 

BUSCALC 3 7 43% 15 65 23% 

BIOCALC 0 3 0% 0 38 0% 

Table 2: Proportions of application examples and exercises in section on definition of the derivative 

Each black arrow between categories in the digraph indicates in-text preparation for successive 

concepts. Thus, a quick measure of how well the text prepares the reader for exercises relating to 

the definition of the derivative may be gleaned by counting the number of black arrows pointing to 

each exercise vertex (the indegree of a vertex). In CALC, the exercise vertex with maximum 

indegree was “Find the equation of the tangent line to the curve at the given point” with 4 arrows. In 

BUSCALC, there was a three-way tie between “Find the rate of change at the given point”, 

“Application word problems”, and “Proofs involving differentiation” each with 3 arrows. In 

BIOCALC, “Find the derivative of a function at the given point” had maximum indegree with 6 

arrows (indicated in Figure 2 by the red bolded vertex). Furthermore, in BIOCALC, the majority of 

black arrows clustered at just two exercise vertices, indicating more variation in preparedness for 

certain exercise types than both CALC and BUSCALC.  

Centrality Analysis 

Following the initial visual inspection, we used two measures of centrality to analyze the digraphs: 

degree and node betweenness. For both measures, a value of 1 indicates the topic(s) most 

emphasized in the presentation of the definition of the derivative. Degree centrality measures the 

number of arrows connected to a vertex (degree of a vertex) relative to the maximum degree in the 

digraph.  In CALC, two topics had degree centrality 1 (“Geometric interpretation of secant & 

tangent lines” and “Definition of derivative”), whereas in BUSCALC and BIOCALC, “Definition 

of derivative” was the lone topic with degree centrality 1. To explain node betweenness centrality, 

imagine that a vertex is a train station. A train station is “between” a pair of cities if we must stop 

there to travel between the two cities. The number of pairs of cities that a given train station is 

between is the train station’s “betweenness”. Taking this measure relative to the maximum 



 

 

betweenness among all train stations is node betweenness centrality. All three texts had exactly one 

topic with node betweenness centrality 1. In CALC, it was “Geometric interpretation of secant & 

tangent lines”, while in both BUSCALC and BIOCALC, it was “Definition of derivative”. The 

centrality analysis results suggest that CALC contains two concepts that compete for importance in 

the development of the definition of derivative, while BUSCALC and BIOCALC focus most on the 

definition of the derivative itself.  

Discussion  

Through our narrative and network analysis of general calculus, business calculus, and biocalculus 

textbooks, we found significant structural differences between the general text and the two 

discipline-specific texts. The discipline-specific texts emphasized the definition of the derivative 

most, while the general text emphasized the definition’s geometric roots so much that this competed 

for importance with the definition itself. More analysis needs to be done to determine whether these 

competing topics benefit or hinder learning. Furthermore, between the two discipline-specific texts, 

there were differences in presenting the definition of the derivative, namely in emphasis on 

application problems and exercise preparedness. The business calculus text both emphasized 

applications more and better prepared the reader for its exercises concerning the definition of the 

derivative than its biocalculus counterpart. These structural differences in the texts may explain the 

lack of improvement in performance outcomes for life science students. Curriculum designers 

should note when selecting textbooks: the stated aim of a biocalculus course, with core calculus 

concepts remaining but with life science context, was not supported by the BIOCALC text. Further, 

our analysis suggests education researchers should be careful to decouple motivation from narrative 

structure differences when comparing student performance outcomes between calculus and 

discipline-specific calculus courses. 
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Introduction
Two special issues have recently appeared in Primus on the theme of “Mathematics and the Life
Sciences” (Robeva et al., 2022). Despite various institutional injunctions since the early 2000s in
the  USA,  the  desired  reform  of  a  greater  integration  of  mathematics  and  biology  in  the
undergraduate  curricula  seems  slow  to  materialize.  In  this  context,  the  special  issue  presents
approaches undertaken by different academic communities to meet the challenges of biocalculus.

Understanding how the contents of university mathematics education (UME) came to be what they
currently  are,  as  well  as  how they  evolve  (or  are  submitted  to  inertia)  under  various  sorts  of
institutional conditions and constraints is an endeavor undertaken by the Anthropological Theory of
the Didactic (ATD; Chevallard & Bosch, 2020) under the name didactic transposition (Bosch et al.,
2021). In this paper, we present a reflexive analysis of transposition processes that we participated
in when the first author (a mathematician and researcher in university mathematics education) was
given the responsibility of teaching and orchestrating a biocalculus course for more than 700 first-
year biology students tutored by 10 mathematics instructors. The course material was developed on
the basis  of  the official  syllabus  and materials  provided by the second author,  an evolutionary
anthropologist familiar with quantitative approaches in biology. In an overall context of stability of
mathematics  curricula  (Bosch et  al.,  2021),  this  reform of  the  mathematics  course  for  biology
students has been experienced as a “revolution” by mathematics teachers, a paradigm shift.

Didactic transposition processes will be modeled and discussed using ATD theoretical constructs in
order to provide answers to the following research questions: What set of conditions and constraints
allowed the emergence of a biocalculus course at  the University of Montpellier  (UM, France)?
What are the characteristics of the transposition phenomena that took place, as compared to a more
classical calculus course (such as the one that preceded it in Montpellier)?

Theoretical framework
In the ATD model, 3 types of institutions intervene in didactic transposition processes: the scholarly
institutions of  knowledge  producers,  the  school  institutions (universities),  and  in  between  the
noosphere (curriculum designers,  policymakers,…) whose agents elaborate  the  knowledge to be
taught from the scholarly knowledge. This first step  called external didactic transposition (EDT)
produces the curricula and syllabi. The subsequent step towards the  actually taught knowledge is
called  internal didactic transposition (IDT), which is achieved by the course teachers.  The two
processes are intertwined since a teacher can take a noospherian position (as a member of a program
committee) to update the syllabus of the course he or she is responsible for.

Let  us  note  IBT and  IMT the  disciplinary  school  institutions  corresponding  to  biology  and
mathematics  teaching,  and  IB and  IM the  scholarly  institutions,  respectively.  Classical  EDT
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processes, e.g. calculus transposition by the mathematics noosphere, rely on series of textualizations
of knowledge that generate a whole posterity of textbooks, rather than drawing on scholarly sources.
This immediately brings out a fundamental difference with biocalculus, which has a much more
recent and reduced textualization (e.g. Schreiber et al., 2014) produced by members of the scholarly
interface  between  mathematics  and  biology  (IBM for  biomathematics)  or  originating  from  the
collaboration between mathematicians and biologists.

In ATD, pieces of knowledge are modeled in terms of praxeologies  (Chevallard & Bosch, 2020).
Although it remains in the hand of IMT, biocalculus teaching is inevitably influenced by IBT  and
finds  its  epistemological  investiture  in  the  scholarly  praxeologies  developed  by  IBM.  It  is  no
coincidence that the biocalculus assessment instrument (Taylor et  al.,  2020) that aims to assess
biocalculus comprehension in various modalities of integration of biological contexts in calculus
teaching was developed by mathematics education researchers in collaboration with IBM members.
ATD  aims  at  elucidating  the  sources  of  biocalculus  praxeologies,  in  particular  how  standard
calculus praxeologies are modified when applied to or developed within biological contexts. 

External didactic transposition
Our main  data  to  analyze the biocalculus  EDT at  the UM are the documents  produced by the
noospherian  institutions.  Strikingly,  the  process  was  initiated  by  the  biology  noosphere  which
launched a working group coordinated by a quantitative geneticist and an epidemiologist (thus IBM

members) with the mission to elaborate the curriculum and content of the mathematics, statistics
and  computer  science  courses  of  the  entire  biology  degree  in  a  coherent  and  interdisciplinary
manner.  The first-year  first-semester  mandatory  biocalculus  course was entitled  “computational
methods”,  with essential  content “elementary algebra and analysis”,  considered as pertaining to
both mathematics and informatics (due to the importance of data manipulation in biology, requiring
the use of computer software) as disciplines, and entrusted to IMT for its teaching. Mainly based on
economic criteria, 12 h of lectures and 21 h of tutorials in groups of 40 students has been allocated.

The working group observed that biology students had a great weakness in mastering the basics of
mathematics (going back to lower high school) and for some a sort of phobia of mathematics, which
impacted, for example, their ability to calculate dilutions and concentrations. Moreover, the recent
reform of the French upper high school was going to reinforce the heterogeneity of the students’
profiles. In other words, the biology noosphere was well aware of 2 crucial issues identified by
UME research: the secondary/tertiary transition and the isolation of mathematics courses in non-
mathematics majors. In such a context, minimal requirements expected from biology students to be
successful  in  biology  studies  were  identified  (e.g.  “reading  an  exponential  or  logistic  curve”,
“understanding of the notion of derivative”,…) and the teaching method was proposed to “start as
much as possible with biological  problems, then move on to formulas and calculations  without
demonstrations”.  As a  final  document,  a  complete  syllabus  has  been written,  organized  in  two
sectors (“elementary algebra” and “real univariate analysis”) declined under different competences
(e.g. “know how to study a function”), which were associated with contents (“domain of a function,
variations,...”), computational aspects (“code the Newton-Raphson algorithm to approximate a root
to a given precision”) and biological applications (“optimum tolerance curves, enzymatic activity”).



This syllabus has been extensively revised by the noospherian members of IMT, first the colleague in
charge of the former calculus module for biology students, then the head of the program committee.
The  division  into  two  sectors  has  been  preserved  (the  first  one  renamed  “basic  mathematical
techniques”), but the competencies have disappeared in favor of themes and topics, bringing back
the classic headings (limits and continuity, intermediate value theorem, etc.). Some of the biological
contextualizations have been retained,  under the headings “example illustrations” which reflects
well the function of the latter in the mind of the noospherian mathematicians. The coherence of a
pyramidal construction of calculus concepts has determined the organization of the syllabus while
the examples that go beyond the framework of a shared scientific culture have been eliminated. 

Internal didatic transposition
Although the mathematical noosphere has pulled in the direction of standardizing the syllabus to
IMT standards to allow for teaching by its  members,  the challenge  of authentically  bringing the
biological contextualizations to life to meet the new philosophy driven by the biology noosphere
remains  for  those  in  charge  of  the  IDT.  The  institutional  issue,  in  the  background,  is  the
conservation of the teaching volume under the responsibility of IMT. This motivated the first author
(Thomas),  a  mathematician  and  didactician,  to  take  over  the  teaching  of  biocalculus  and  to
collaborate with the second author (Bernard), a biologist who had already taught a mathematical
remediation module for first-year biology students, jointly with a physicist and a mathematician.

The documents and sources (e.g. Milo & Philipps, 2015) transmitted by Bernard to Thomas do not
come from the existing biocalculus textbooks (not known to Bernard, perhaps because these TDE
products  are  still  too  young  to  spread  beyond  the  Anglo-Saxon  culture)  but  from quantitative
biology  textbooks  and  Bernard’s  own  scholarly  biomathematical  practice,  transposed  into  his
biology teaching as well as into the remediation module. Thomas also looked up primary sources
(e.g.  Bigelow,  1921)  to  collect  data  and  their  representations  by  biologists  in  order  to  build
authentic biological contextualizations bearing the rationale of calculus concepts (on this example,
the scope of an exponential decay in connection with applications in predictive microbiology).

In this endeavor, informed by ATD constructs, new praxeologies specific to biomathematics have
emerged. For example, model fitting praxeologies (exponential and allometric in particular), using
instrumented techniques (spreadsheet and regression), occupy an important place. They require a
good mastery of the properties of logarithms and the articulation between graphical and algebraic
registers,  in  order  to  correctly  interpret  standard  representations  in  biocalculus:  on  logarithmic
scales, the biologist notes the measured values x where the mathematician would note the logarithm
X of  these values,  with regular  graduations.  This  results  in  the need to  teach  a  “yoga”  of  x-X
conversion, so that students may compute the slope properly or determine a law like Bigelow’s
from  the  graphical  representation  of  a  fit  of  the  data.  Similarly,  a  proportionality  relation  of
coefficient  k between two quantities  that  admit  a wide spectrum of variation is  identified  after
passage in log-log coordinates by a linear regression line of slope 1 and y-intercept log  k. For a
learner, this praxeology confuses the issue by interfering with the classical technique of drawing a
regression  line  of  slope  k passing  through  the  origin.  Such  examples  illustrate  a  common
phenomenon: although biomathematical praxeologies are built on classical calculus praxeologies,
learned at  the  end of  high  school  and completed  by a  more  formal  logos in  classical  calculus
courses, their application in authentic biological contextualizations often requires an adaptation of



known techniques  together  with an additional  part  of  the technology of  the  praxeology,  which
establishes a link with the particularities of the biological context and allows its proper application
to the latter.  In the eyes of the ATD, then,  it  is  not  surprising that  the biocalculus  assessment
instrument identified log-log graphs as a source of persistent student difficulty (Taylor et al., 2020).

Conclusion and outlook
This reflective study of didactic transposition carried out at the University of Montpellier in the
context of calculus for biology students, based on the theoretical constructs of ATD, underlines the
essential  role  played  by  the  biology  noosphere,  imposing  the  constraint  of  authentic  biology
contextualizations and the processing of data on computers (even if largely reduced to homework
and  its  presentation  in  class),  in  the  emergence  of  a  biocalculus  course  that  offers  a  better
integration of calculus knowledge with biology. A favorable (even necessary) condition for the
good realization of the project was the cooperation between a mathematician and a biologist whose
own research is  related  to the field of biomathematics  where the epistemological  legitimacy of
biocalculus  lies.  Without  relying  on  the  few  existing  Anglo-Saxon  biocalculus  textbooks,  the
interactions  have  converged  towards  classical  biomathematical  themes  (allometry,  basal
metabolism, Verhulst logistic model, etc.) which are conducive to articulating mathematical work
with biological stakes that meet the combined requirements of mathematics and biology teaching
institutions, and which can be found in the biocalculus textbooks. This shows the existence of an
attractive pole of the didactic transposition processes, which tend to converge towards a body of
knowledge whose didactic efficiency is still to be shown and reinforced, due to the emergence of
biomathematics  specific  praxeologies  that  need  to  be  investigated  and  analyzed  in  relation  to
classical calculus praxeologies, but which bases its coherence in the scholarly practice of reference,
at the interface between mathematics and biology.
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Introduction and research problem 
Physics is recognized as the scientific field with the strongest ties to mathematics. In particular, the 
notion of derivative emerged from geometrical considerations (slope) as well as physical ones 
(velocity and acceleration). The derivative is one of the key notions of calculus and plays a central 
role in kinematics, the study of motion in mechanics. For post-secondary STEM (Science, 
Technology, Engineering, and Mathematics) students, it is fairly common to be enrolled in both a 
calculus and a mechanics course in the same year, and even the same term; students therefore 
encounter this notion in two different contexts. Moreover, recent research highlights the “filtering” 
role of calculus courses in STEM studies, which can explain the high dropout rates in STEM 
programs; these dropouts could also be linked to a lack of motivation in students who view calculus 
as being disconnected from their chosen discipline (e.g., Biza et al., 2022). 

A large body of research literature in mathematics education identifies the derivative as a difficult 
notion for students to grasp (e.g., Thompson & Harel, 2021), and in recent years the study of calculus 
for engineers and other non‐mathematics professionals has been getting more and more attention 
from the research community (e.g., Biza et al., 2022). Yet research in mathematics education focusing 
on the teaching and learning of the derivative in a physics context remains scarce (e.g., Hitt & 
González-Martín, 2016). Moreover, we have identified conflicting views in the literature concerning 
the role of physics contexts in the learning of the derivative: some researchers believe that a physics 
context can support learning, while others note difficulties linked to applied contexts, pointing to 
existing misconceptions about speed and acceleration in kinematics (Hitier & González-Martín, 
2022a). We have also noticed that in these studies, “emphasis is usually placed on covariation and on 
the interpretation of the derivative as rate of change, and less on the physics interpretation” (p. 296). 

The above considerations suggest the need for more research “investigating the relationships between 
calculus and these client disciplines […], with attention to the practices of these disciplines” (Biza et 
al., 2022, p. 400). Therefore, our research program seeks to investigate practices in calculus and 
mechanics courses that explore the notion of derivative in one-dimensional kinematics. In particular, 
we seek to pinpoint consistencies and inconsistencies between practices in both disciplines to better 
understand the difficulties encountered by students, and propose some recommendations. 

Theoretical framework 
The Anthropological Theory of the Didactic (ATD – e.g., Bosch et al., 2020) provides useful tools to 
study practices in calculus and mechanics; these fields may be considered as being two different 
institutions, as defined in ATD. One of those tools is praxeology, which consists of two blocks: a 
practical block (praxis) and a theoretical block (logos). The praxis block contains a type of task, T, 



 

 

and a technique, τ, to accomplish that task. The logos block includes the rationale, or technology, θ, 
itself supported by a wider theory, Θ. The logos block justifies and explains the praxis block. 

Bosch et al. (2020) also specify the “institutional relativity” of praxeologies (p. xv). Not only can a 
praxeology be defined solely in relationship to an institution, but it may also evolve within the 
institution or move from one institution to another. In doing so, each of its four elements may undergo 
a degree of transformation. We are interested in these phenomena and therefore formulate our 
research question as: What are the main consistencies and inconsistencies in praxeologies related to 
the derivative in one-dimensional kinematics in mechanics and differential calculus courses? 

Methodology 
Our research question is the starting point of a large ongoing research project, whose main results are 
summarized in this presentation. In Quebec, Canada, colleges are post-secondary institutions that 
provide, among other course offerings, two-year science programs for students intending to pursue 
STEM-oriented university studies. We selected a large college (College A hereinafter), collecting 
data from three different sources: textbooks, teachers and students. 

Textbooks. We conducted a praxeological analysis examining the relevant sections of five calculus 
and five mechanics textbooks. These included the books used by College A, as well as other textbooks 
widely used in Quebec (for more details, see Hitier & González-Martín, 2022a). 

Teachers. We first conducted semi-structured interviews with four calculus and three mechanics 
teachers from College A (for more details, see Hitier & González-Martín, 2022a). We then observed 
two classes: one differential calculus and one mechanics course, during the winter 2021 term. The 
two observed teachers, who also participated in a semi-structured interview, were not among the 
previous participants. All participants volunteered to take part in the study. 

Students. An online questionnaire containing problems in both kinematics and pure calculus contexts 
was distributed to science students at the end of the fall 2020 term. Among the approximately 1,200 
students contacted, 62 answered at least one of the problems (for more details, see Hitier & González-
Martín, 2022b). In March 2021, we conducted problem-based interviews with four student volunteers 
who had completed the questionnaire. 

Results and discussion 
In this paper, we discuss the main results of the analyses performed so far. 

What we learn from the textbooks 

Results of our textbooks analysis have been reported in Hitier & González-Martín (2022a). We 
noticed, among other elements, that in mechanics the presentation of velocity as the limit of average 
velocities, as the rate of change, as the slope of a tangent and as derivative appears in the logos of all 
textbooks; we also identified a few shared praxeologies. However, in the mechanics textbooks, only 
a small number of tasks use the derivative explicitly (for instance, tasks that ask students to determine 
the velocity function from a position function using a technique based on differentiation). In general, 
in the mechanics textbooks, “once the equations of motion are introduced, the explicit use of the 
derivative disappears from the proposed techniques, which take an algebraic approach” (p. 312). On 



 

 

the other hand, in calculus, tasks that appear in a one-dimensional kinematic context (representing 
only 9.4% of the tasks in the analyzed textbook sections) “rely on the limit definition or a direct 
application of differentiation rules, and an explicit interpretation of the derivative as the limit of a rate 
of change is rarely necessary, nor is an explicit interpretation of the motion context required” (p. 312). 
It appears that none of the two courses actually encourages covariational reasoning, although the latter 
has been identified as an “underlying cognitive roo[t] for meaningful understanding of derivative” by 
Thompson and Harel (2021, p. 509). 

What we learn from the teachers 

Part of our results from the teacher interviews can be found in Hitier & González-Martín (2022a). 
Our participants reported that they primarily reproduce their textbooks’ praxeologies. For instance, 
although most of the calculus teachers consider rate of change to be important, “their teaching, […] 
emphasizes computations in the techniques taught” (p. 308). Moreover, perhaps due to the fact that 
both courses are taught in parallel, the mechanics teachers feel that “students don’t have enough math 
… to speak physics.” (p. 310) This may justify some of their practices, where derivatives occupy a 
very small place. 

So far, the ongoing analysis of the observed courses seems to confirm that the praxeologies presented 
in class reflect those in the textbooks. For instance, the problems presented by the mechanics teacher 
are lifted from the textbook, and, in class, only one problem explicitly used the derivative. However, 
instead of referring to the differentiation formula (the technique provided in the solution manual), the 
teacher approached the problem using the limit of average velocities, probably because the derivative 
had not yet been covered in the calculus course. 

What we learn from the students 

In Hitier & González-Martín (2022a), we conjectured that the identified inconsistencies in 
praxeologies could be the cause of some students’ difficulties in transferring knowledge between both 
disciplines. To test this conjecture, we proposed, both in the questionnaire and in the interviews, pairs 
of “similar problems”, that is, problems presenting basically the same task, one in a pure mathematics 
context, the other in a kinematics context. Only a few students used praxeologies from the familiar 
kinematics task to solve the unfamiliar calculus task (Hitier and González-Martín, 2022b). 

In the interviews, we also proposed questions without explicitly framing them in either discipline. 
For instance, we asked the participants what information they would need and how they would 
proceed to determine the maximum height of an object thrown upward, a problem found both in 
calculus and mechanics textbooks. All the students mentioned techniques from kinematics; that is, 
they asked for punctual data, such as the initial velocity, and used one or more kinematics equations 
to solve the problem. Two of the four students (S2 and S4) identified that “you could give me various 
[data] and with those various [data], I could solve it in different ways” (S4), and only S2 (whose 
calculus and mechanics courses were paired, see Hitier & González-Martín, 2022b) mentioned a 
technique from calculus: 

I could solve it two ways: if I had three out of the five kinematics variables, then I could use the 
kinematics equations to determine the maximum height, or if I had the position function of this 



 

 

object, then I could use the first derivative test to determine the maximum of the function. (S2)  

Final remarks 
Our research so far has identified that although they share a common logos, the praxeologies in 
calculus and mechanics reveal important inconsistencies, which seem to contribute to students’ 
difficulties in making connections between both disciplines. In calculus, kinematics problems tend to 
be tackled by using differentiation formulas, and not explicitly considering motion or covariation; in 
mechanics, ready-to-use formulas are provided, so students can solve these problems without using 
knowledge from derivatives nor thinking in terms of covariation. Our interviews also show that the 
students prefer ready-to-use formulas where they do not have to reason in terms of functions or 
variation; it seems, therefore, that techniques learned in calculus are abandoned in favor of the ready-
to-use formulas learned in mechanics. We conjectured in Hitier & González-Martín (2022a) that some 
inconsistencies may arise from both disciplines having different epistemological approaches; we 
propose that collaboration among mathematics and sciences education professionals—teachers and 
researchers—could help bridge this gap. We also stress the importance of including more tasks in 
both disciplines that favor physical and covariational reasoning, as our analysis identifies that neither 
calculus nor mechanics explicitly covers this crucial element. The more teachers from both disciplines 
collaborate to create tasks based on ideas foundational to calculus (e.g., Thompson & Harel, 2021), 
where techniques do not rely on the use of formulas, the more students will be able to develop 
conceptual learning related to one-dimensional kinematics. 
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Introduction 
As Dreyfus, Kouropatov, and Ron (2021) suggest “it is hard to imagine modern scientific culture 
without derivatives and integrals.” (p. 679). It is broadly known by mathematicians and scientists 
alike that calculus is ubiquitous in all branches of science. But whilst there has been significant 
research interest in student transition from introductory calculus to university analysis and proof, 
teaching calculus for university science students has attracted little focus from mathematics education 
researchers. 

Rationale for teaching calculus to science students / teaching approaches 
The increasing role played by mathematical modelling in all areas of modern science reinforces the 
need for science students to have a working knowledge of calculus. However, calculus often presents 
major challenges affecting student persistence in STEM disciplines. This is particularly true for 
students from groups historically underrepresented in STEM, with longstanding concerns in the USA 
about the drop-out rates from university calculus units (Rasmussen & Ellis, 2013).  

Traditional calculus units have inherent difficulties meeting the demands of various needs within the 
same class (for example, economics, science, engineering) often leading to disengagement when 
students do not appreciate the relevance of mathematics to their area of study. In addition, how the 
mathematics is transferred to a science context has not been a focus for mathematics education 
researchers, though recent findings by Nakakoji and Wilson (2018) suggest that transfer varies 
according to discipline but correlates with higher levels of general educational attainment. 

How best to incorporate the teaching of calculus in science curricula is often decided on pragmatic 
rather than pedagogic grounds. Options include that calculus is embedded in various science units 
including relevant context, bespoke mathematics units designed for a specific area of science, or 
stand-alone mathematics subjects where little relevant context is offered. Which alternative is chosen 
is often decided by the space in a degree available to incorporate additional units or resource impacts 
like the cost of delivering specific mathematics units instead of a general mathematics unit. 

The BIO2010: Transforming Undergraduate Education for Future Research Biologists project made 
recommendations including creating strong foundations in mathematics through the development of 
interdisciplinary subjects taught by an interdisciplinary team (National Research Council, 2003). 
Numerous studies, including O’Leary et al. (2021), have found that biology students taking newly 
designed mathematics units performed the same or better in their subsequent science units than those 
students who studied the traditional calculus units. 

A leading Australian university has attempted to bridge the gap between teaching calculus theory and 
practice by designing an innovative unit for science students across a range of degrees. 
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Case Study: Theory and Practice in Science (SCIE1000) 
In 2008, following the BIO2010 project, a new interdisciplinary unit, Theory and Practice in Science 
(SCIE1000), was designed for a wide range of science students at The University of Queensland 
(UQ). The unit resulted from a strong desire by two Faculty Deans for biomedical and biology 
students to learn more quantitative skills. Previously, biomedical and biology students studied only 
one statistics unit in first-year and no mathematics units over their entire degree.  

Initially, SCIE1000 was compulsory for Bachelor of Biomedical Science students and highly 
recommended for all other science students. By 2018 it was compulsory for all Bachelor of Science 
students bringing the total enrolment to approximately 1,500 students annually. The unit SCIE1000, 
designed by a mathematician with input from science academics, is built on four pillars: scientific 
thinking, modelling and analysis, programming, and communication. The content is interwoven 
throughout the material rather than being delivered in separate blocks. It is co-taught by 
mathematicians and scientists, highlighting the differences between doing mathematics as a 
mathematician and doing mathematics as a scientist.  

SCIE1000 includes 33 case studies that examine a variety of contexts drawn from a range of scientific 
disciplines, including chemistry, biology, and physics. More than half of the case studies involve 
calculus. It is expected (but not required) that all students have previously studied an introductory 
calculus unit (usually at secondary school). Whilst including calculus in science contexts is not a new 
idea, the design of SCIE1000 is focused less on analytical skills typically covered in calculus units 
and more on practical applications of mathematics to elucidate the science contexts.  

This practical focus is partially achieved by using numerical techniques and algorithms, which also 
reinforces the acquisition of programming skills. Students are empowered to solve complex, real-life 
equations using rates of change in Newton’s method, interpret areas under curves with simple 
numerical integration techniques such as the trapezoidal rule, and employ Euler’s method to solve 
ordinary differential equations (ODEs) and systems of ODEs to model populations. Accompanying 
these techniques is a strong emphasis on interpretation of the models and an evaluation of their 
applicability in context.  

In SCIE1000, rates of change are introduced through the context of pharmacokinetics. This starts 
with laying a brief conceptual foundation of average versus instantaneous rates and establishing a 
connection between the sign of the derivative and the increasing and decreasing behaviour of 
functions.  These ideas are explored in context including blood cyanide concentrations resulting from 
smoking (case study #17) and blood alcohol concentration curves (#18). Newton’s method is 
introduced as a means of determining the time at which a contraceptive reduces below some minimum 
threshold for reliable function, where the concentration of the contraceptive is presented as a surge 
function which motivates the use of a numerical solution technique in the absence of an analytical 
solution (#19). Despite this practical approach, students encounter the derivation of the Newton’s 
method formula, with an emphasis placed on the mathematical power of seemingly simple straight 
lines, namely the tangent line. 

In many instances, students can also draw on their own life experiences to find relevance in the 
calculus concepts being taught. Calculating the area under a curve (AUC) is a topic where this is 



 

 

evident. There are four case studies where the primary focus is the AUC. In the first of these (#21), 
students explore exposure to alcohol and consider the effects of binge drinking. Then, students 
encounter AUC as a tool for interpreting diagnostic measurements taken over an interval in the 
context of blood glucose (#22). Finally, students utilise ratios of areas in the definitions of Glycaemic 
Index (GI) (#23) and the bioavailability of medicine (#24). Integration is not a mathematical 
technique that is taught in the course, instead, students develop an elementary understanding of left 
and right Riemann sums and utilise the trapezoidal rule (or other appropriate approximations) to 
perform AUC calculations and give these calculated quantities meaning. The AUC case studies are 
rooted in biomedical contexts, but many students would be able to contextualise these ideas through 
their own lived experience and continue to utilise this knowledge as informed consumers of goods 
and services. 

The final calculus topic encountered in this course, differential equations, is likely new for many 
students and could be perceived as mathematically daunting if not handled carefully. Students are 
provided with foundational tools which enable them to understand, develop, and numerically solve 
simple ODE models they may encounter in their own discipline area, and show why DEs can be a 
valid and useful approach in practice. Classic ODEs describing exponential growth, logistic growth, 
predator-prey interactions, and SIR(D) models of infectious diseases are all encountered in this unit. 
These concepts are uncovered through case studies including monitoring bacterial growth of E. coli 
in food handling (#25), examining overfishing of oysters and maximum sustainable yields (#27), 
evaluating interventions for reversing population decline among turtles (#28), and investigating 
potential impacts of vaccinations on disease spread dynamics and “flattening the curve” (#32) which 
has been particularly topical since the advent of the Covid-19 pandemic. Although the study of DEs 
in SCIE1000 does not touch on analytical solution techniques which may be covered in more 
traditional calculus units, emphasis is again placed on demonstrating that the tangent line can be 
thoughtfully utilised to approximate a solution profile through Euler’s method. Consequently, 
students should leave with a reasonably comprehensive DE modelling toolkit given that the unit is 
typically taken in the first semester of study at university.  
A 2008 survey of biological science students taking SCIE1000 found that students held a positive 
view of the importance of mathematics in science and Matthews, Adams, and Goos (2010) concluded 
that “Further comparisons between 2008 and 2009 demonstrated the positive effect of using genuine, 
real-world contexts to enhance student perceptions toward the relevance of mathematics” (p. 290). A 
later 2019 study found that although SCIE1000 students had an overall favourable perception of 
mathematics at the end of the semester, an examination of the change in student attitudes towards 
mathematics from the beginning of the semester to the final week of study suggested the course may 
have a mixed effect on student’s views towards using and doing mathematics (Piggott et al., 2019). 

More research is clearly needed for SCIE1000 to determine how effective this ‘calculus in context’ 
approach is in terms of improving student perceptions of mathematics. Whilst the aim of SCIE1000 
is not to teach calculus in a traditional manner, an area of future research could be to investigate 
SCIE1000 students’ calculus understanding when attempting more traditional calculus questions.  

There has been uptake of several SCIE1000 case studies in traditional calculus units at UQ. For 
example, the BAC case studies (#18, 21) have been used in two ways: to illustrate how calculus 
underpins everyday situations, and to determine students’ conceptual understanding of differentiation 



 

 
and the threshold concept of functions. For example, differentiating the Posey and Mozayani formula 
(2007) for BAC  𝐵𝐵(𝑡𝑡) = 𝐴𝐴

𝑟𝑟𝑟𝑟
(1 − 𝑒𝑒−𝑘𝑘𝑘𝑘) × 100 − 𝑉𝑉𝑉𝑉 is arguably a much richer exercise than 

differentiating, for example, 𝑦𝑦 = 5𝑒𝑒−2𝑡𝑡 − 5𝑡𝑡, due to the multiple ‘letters’ in the equation. 
Conversations with students in these traditional calculus units have shown that students appreciate 
seeing where calculus is used in everyday situations, particularly regarding alcohol as many 
Australian students become legally able to consume alcohol in their first year of university.   

Conclusion 

Understanding calculus is a fundamental skill required by a diverse group of graduates including 
scientists and engineers. In spite of this, there is a lack of research on how theoretical knowledge is 
transferred to a variety of scientific contexts. Such evidence is critical in influencing decision makers 
to prioritise pedagogic concerns when designing teaching models over resourcing issues when 
effective models are more costly.  

The first-year science unit presented here is just one example of teaching calculus to science students 
that improves student engagement when an authentic situation is employed; that is, when 
mathematicians and scientists work collaboratively rather than in isolation. 
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Introduction 

This paper deals with the use of integrals in a task on signal analysis given to students in an 

examination in a first-year course on electrical engineering (EE). In this task, the students are to 

calculate several mean values of voltages required to describe the behavior of electrical networks 

using a voltmeter. We aim at understanding what kind of mathematics is required for the solution 

and how it is used. We used this task in a larger empirical study of several tasks. We interviewed 

experts in EE with regard to their understanding of the competencies needed to solve the task, 

studied pairs of students’ solution processes, and analyzed written student solutions taken from the 

course exam. We will focus on the interview of the EE-expert, who was asked to work on the 

problems using the expectable knowledge of good students after their second semester. The 

interview was done using the PARI-methodology (Hall et al., 1995): after work on the task, the 

expert was asked for reasons for their decisions and actions and explicitly about the required 

competencies. 

The task shows different practices and disparities between mathematics and engineering courses 

typical for such exercises. One reason for disparities is, that engineering students often learn 

mathematics separately from the engineering courses, which leads to several challenges. For 

example, the mathematics courses (MfE) have the deductive conceptual structure of mathematics 

lectures while the EE-course has an order of topics according to electromagnetic theories and often 

also according to traditions. Moreover, mathematical practices in EE can be characterized (Alpers, 

2017) that differ from corresponding practices in mathematics courses, e. g., infinitely small lengths 

(dl), areas (dA) or volumes (dV) are treated as infinitesimally small quantities, which are cumulated 

by integration. 

Theoretical background and methodology 

For the study of EE-problems we developed a concept for a normative solution, the student-expert-

solution (SES), which is a central tool for the analysis of solution processes and products based on 

the rather short solution for the correctors of the exam. The final step of its generation is an expert 

interview to find out the competencies and skills expected from students when solving the 

exercises, for more details, see Kortemeyer and Biehler (2022). We found that solution processes in 

EE-problems can be subdivided into three phases based on conceptualizations of modeling 

processes by Uhden et al. (2012) and problem-solving and heuristics by Polya (1949): Phase 1 

(mathematization) is usually done with help of a conventionalized model, i.e., students do not make 

their own idealizations and simplifications. In Phase 2 (math-electrotechnical symbolic-conceptual 

manipulation and reasoning) students enter a world of physical quantities (numbers with units) and 
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use mathematical knowledge to obtain their solution. Phase 3 (validation) contains a critical review 

of the results in the EE-context, but not a check of the adequacy of the model. 

With regard to the integral concept, we distinguish between different interpretations or mental 

models: (oriented) area, accumulation, mean value (average) (Greefrath et al, 2021) and of course 

the mathematical property of average, which are relevant at school level. 

The use of integrals in the EE course and students’ prior knowledge 

Considering prior knowledge, students should be rather familiar with both antiderivative and 

orientated area conceptions of the integral. The lecture notes of the EE-course provide formulas that 

usually are developed by using differentials and the accumulation approach but as the derivation of 

the formulas are no explicit part of the lecture notes, it is not clear how and whether this was done 

in the EE-lecture. The lecture provides formulas calculating means of a varying quantity by an 

integral, without deriving them, probably assuming that the use of integrals as averages was covered 

in MfE, which is often not the case. We will see that the exercises focus on the application of the 

provided formulas but not on developing them from basic laws using the accumulation aspect of 

integrals. 

The exercise on signal analysis 

The voltage uL(t) shown in the figure is applied to a coil L = 100mH for a duration of T = 10s: 

 

Figure 1: Given sketch of the voltage values 

With the given sketch on voltage values uL(t), the students are to calculate (1) the average value, (2) 

the RMS-value and (3) the rectified value of the voltage in the interval 0s to 10s. Student just have 

to remember three respective formulas from the lecture, and then solve the integral mathematically.  

(1) , (2)  and (3)  

Normative solution and expert interviews 

In this section, the three parts of the exercise are analyzed parallelly, as they have many 

commonalities. uL(t) is a piecewise-defined function. From the MfE-course view, it would be 

necessary to find (interval-wise) formulas for the function sketched in figure 1 and then calculate 

the integrals in the four intervals and use the additivity theorem of the integral to calculate the 

integral for the whole interval from 0 to T. This calculation is situated in phase 2, students have to 

t

uL(t)

1 V

iL

uL

L
2 V

-0,5 V
2T/10 4T/10 6T/10 8T/10 T



 

 

work with quantities and their units (different from MfE). Also, the formulas for the function (phase 

1) in the four intervals have to be specified with units, functions have to be regarded as functions 

between magnitudes not between sets of numbers as in MfE. For example, in the interval from 

5T/10 to 9T/10, the correct formula is uL(t)=4,5V-1V/s t. t has the unit s, so that uL(t) has the unit V 

(volt). Students are required to use their school knowledge to specify the formula for the different 

linear or constant functions in other intervals. However, in school, setting up such formulas with 

units was not practiced. From these formulas, just the square or absolute values must be taken in (2) 

resp. (3). These leads to elementary functions, where the integral can be calculated from the 

antiderivative point of view. 

However, the expert suggests a different solution: He uses the area interpretation not just as an 

interpretation (as often in schools) but as a calculation method. The oriented area under the curve in 

figure 1 can be calculated by elementary geometric area formulas. It is moreover allowed to cut and 

reassemble parts while the size of the area remains invariant. To calculate the average, the expert 

used a technique he calls “block shoving” instead. After writing down formula (1) he says: "That 

means we now want to calculate the two areas under here." He hatches both triangles, separates the 

apex (uL(t)>0.5V) from the front triangle, and moves it so that a rectangle with height 0.5V is 

obtained, which can be calculated as 0.5V 2s = 1Vs. He continues with regard to the interval from 

"0.5V times 3s is -1.5Vs. And here [meaning the interval between 5T/10 and 9T/10] we can shove 

blocks again. 1V times 4s are 4Vs. A total of 3.5. Second cancels out [he means the division by T in 

formula (1)], that's 0.35V.” The area has the dimension V s that is not only the dimension of 

magnetic flux but can be interpreted as the magnetic flux between 0 and T. The average   is the 

fictious constant voltage that is needed to achieve the same magnetic flux as the signal shown in 

figure 1. In geometrical terms: The rectangle from 0 to T with the height of   has the same area as 

the oriented area under the signal function in figure 1. This interpretation is not made explicit but 

underlies implicitly the calculation. 

This strategy uses a combination of two conceptions of an integral: on the one hand, the integral 

itself gives the orientated area between the t-axis and the graph of the function, and on the other 

hand, the formula applied in (1) gives the mean of the cumulative values of uL(t) in the interval of 

integration. The cumulative conception of the integral is needed for the derivation of the formula, 

but it is not needed for the calculation. Instead, the expert substitutes the integral by a sum of areas 

of geometric objects which can be calculated by known formulas without applying calculus. 

Concerning the calculation of (2), the expert states “Things are a bit more complicated because you 

have a square and a root in there. The square makes life a bit difficult. If you have a constant value, 

you square it and you can still calculate it with the rectangles. With triangles it is different, because 

they become parabolas by squaring. It is not possible to calculate the area in one go. You really 

have to calculate the integral. You have to do this piece by piece, but you can move the blocks back 

and forth as you like, which is what I did here. That's why the lower limits are all zero. This 

eliminates terms, which makes it easier.” The expert says, that there is no possibility of avoiding 

integration in this part, but he tries to simplify this integration as much as possible by the “moving 

block” technique again. He shifts the function of rectangle in the interval from 2T/10 to 5T/10 and 

that of the triangle in the interval 5T/10 to 9T/10) along the t-axis to make zero the lower limit of all 



 

 

integrations, which affects both the upper limit of integration and the formula of the functions in the 

integrand. It makes evaluating the integrals easier, as zero can be inserted for the lower limit in each 

case, and the formulas of the linear functions are also somewhat easier to find. 

In (3) - using the block-conception again - all blocks have now a positive sign because of the 

absolute value – but the areas that were calculated in (1) can be reused, giving 0.65V instead of 

0.35V as the result. In his validation, the expert argues that the value has be greater than in task (1), 

as all the blocks have to be taken positively. This can be even considered as a generic geometric 

proof that the integral over the absolute value is always equal or higher than the integral itself. This 

is a very different kind of justification than the proof in MfE, where the monotonicity of the integral 

is used for justification and such geometrical arguments would usually not be accepted. 

Summary and recommendations  

This paper presents an exercise on signal analysis in which integration is used to calculate different 

means of a process where the voltage varies. We identified several differences between the 

practices in MfE and EE. The calculation of the integral is done or simplified by geometrical 

formula and operations, based on a clear understanding of integral as an oriented area. The area and 

the average have units with a physical meaning. This is surprising as one might have expected that 

the accumulation aspect of the integral might be the most important in physics and EE. Its relevance 

is high in the derivation of the formulas, however the exercise in this examination does not check a 

competence of deriving and interpreting formula but just of applying formula to a situation. 

Moreover, the average interpretation of integration is also most relevant, which however, as a rule 

has neither a prominent role in school calculus nor in MfE courses. These differences if prevailing 

could lead to changes in both courses for a better co-ordination. 
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Introduction and embedding of the research 

Most studies in mainstream peer-reviewed journals in economics include formal mathematically or 

statistically based analysis (Dawson, 2014). In particular, calculus plays an important part in the 

economics discipline in higher education and has a key role in developing understanding of key 

economic principles and concepts.  

Although economics students are usually required to take a mathematics course in their first year, the 

literature shows that many students struggle to make sense of the mathematics in other economics 

courses (Feudel & Biehler, 2021). From the literature on service mathematics courses (Alpers, 2020), 

it is clear that discrepancies between how mathematical concepts are understood and taught in 

mathematics compared to the way they are used in other disciplines cause learning problems for many 

students. There are few studies investigating such discrepancies in economics, but for example, 

Feudel and Biehler (2021) found that most economics students could not make the connection 

between the mathematical concept of the derivative and the common economic interpretation of the 

derivative.  

Similarly, the motivation for this paper emerged from a meeting with two professors at the business 

school of the University of Agder where they raised deep concern about many of their students 

seeming to be unable to apply the Lagrange multiplier method. This gave me, as the lecturer of the 

mathematics for economists students course, the challenge of understanding how such discrepancy 

might be causing learning difficulties for the students. While Xhonneux and Henry (2011) analysed 

presentation of Lagrange’s theorem aimed specifically at students studying economics and at students 

specializing in mathematics, this study investigates the presentation and use of Lagrange presented 

in two texts aimed at the same audience, that is, the economics students. The aim here, is to gain 

insight into how the concept is used in economics so as to make the teaching of the economics service 

mathematics course more relevant for students. 

Lagrange’s multiplier method 

Lagrange’s Multiplier method is used to solve constrained optimization problems in economics, 

particularly in microeconomics. The method provides a strategy for converting constrained 

optimization problems (finding the maximum or minimum of a function of several variables 

subject to equality constraints) into unconstrained optimization problems, by introducing a new 

variable 𝜆, called the Lagrange multiplier.  

Methodology 

I investigated the introduction of the Lagrange multiplier method through analysis of the textbooks 

which are the main teaching and study resource in the respective courses at the University of Agder 

(and at several other universities in Norway): “Matematikk for økonomistudenter” by Dovland 

and Pettersen (2019) and “Microeconomics with Calculus” by Perloff (2013). Ideally, the 
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mathematics for economics students course (taught in the students’ second semester) should 

provide solid understanding of the method which is later used in the microeconomics course 

(taught in the students’ third semester). Thus, given that students use the textbook as an important 

learning tool (Randahl & Grevholm, 2010), they need to deal with the transition from the 

mathematics textbook to the microeconomics textbook. To prepare to carry out this textbook 

analysis, I read several important studies which guided my work (i.e. Feudel, 2019; Randahl & 

Grevholm, 2010). My research question was: How do the concepts used to introduce Lagrange’s 

method compare between the mathematics for economists textbook and the microeconomics 

textbook? To answer the question, I focused on key terms used in each text and examined the 

relationship between them that students need to establish in order to make the transition. 

The graphical approach to constrained optimization 

The analysis started with an exploration of the chapters in the microeconomics book where 

Lagrange’s multiplier method was mentioned and used. The focus for this paper was then restricted 

to the first encounter with Lagrange’s method, which considers constrained consumer choices. In the 

mathematics book, Lagrange’s multiplier method is introduced in a chapter which considers 

constrained optimization problems. At a first exploration of the structure of the chapters, I noticed 

respects in which the two books followed similar approaches. First constrained optimization is 

approached graphically, then by the substitution method, and finally introducing Lagrange’s 

multiplier method. However, a closer look at the introduction and the solved problems (examples) to 

the three stages revealed important differences between the two books. Within the space available 

here, I choose to focus on the first stage of the introduction, that is, the graphical introduction to 

constrained optimization.  In the mathematics text, the key-terms were: maximum, minimum, contour 

line and tangent point whereas in the microeconomics text the key terms were: indifference curve, 

utility function, optimal bundle, marginal rate of substitution, marginal rate of transformation and 

tangent. These are outlined shortly in this section and the graphs discussed are presented in Figure 1 

and 2 respectively.  

In the mathematics book, constrained optimization problems are informally introduced through the 

analogy of a landscape with a mountain where the constraint is the road you are restricted to move 

along when moving by car in the landscape. Landscapes can be plotted in the 𝑥𝑦-plane by drawing 

contour lines. It is discussed that a road crossing a contour line on a map is not at a maximum or 

minimum of the landscape accessible by car. The ‘pictorial map-introduction’ is simultaneously 

discussed in mathematical terms around the example:  

 

 

 

 

 

 

  

Figure 2: Graph from (Perloff, 2013 p. 101) 

         

Figure 1: Graph from (Dovland & Pettersen, 2015 p. 506)                                    

 

Figure 1 copied graphs from the mathematics and the 

microeconomics books respectively.  



Maximize/minimize 𝑓(𝑥, 𝑦) = 𝑥𝑦 s.t. 2𝑥 + 𝑦 = 4, 𝑥, 𝑦 ≥ 0. The graph (presented in figure 1) is 

derived through plotting several contour lines of 𝑧 = 0.5, 1, … 3. The maximum and minimum values 

are then discussed by counting the values of the different intersection points of the objective function. 

The constraint’s intersection with the 𝑥- and 𝑦-axis (point 𝐴 and 𝐷) are pointed out as minimizing 

the value of the function. While the intersection with the contour lines (point 𝐵) cannot be the 

maximum points, the maximum must be where the constraint is tangent to a contour line (point 𝐶) or 

alternatively, the curve defining the constraint is itself going through a critical point of the objective 

function 𝑓. The second alternative is easily rejected as the constraint is not going through the origin, 

which is the critical point of 𝑓. The conclusion is henceforth, that the only remaining alternative to 

the maximum is the tangent point 𝐶.  

In the microeconomics book, the context is consumer choices subject to budget constraint. Consumer 

preferences are mapped as indifference curves with the underlying assumptions that the consumer 

chooses between two goods only (pizzas (𝑞1) and burritos (𝑞2)), uses up the whole budget and 

maximizes his/her utility. All points (bundles of goods) on an indifference curve make the consumer 

equally satisfied but shifting between indifference curves changes the level of satisfaction (or utility). 

First, presumably because consumers seek to maximize their well-being, minimizing utility is not an 

issue. The maximum point is discussed as lying within the opportunity set (the area 𝐴 + 𝐵). Because 

of consumers always preferring more to less the consumer will not purchase a bundle inside the area 

(point 𝑒 is preferred to 𝑑 as it gives the consumer more of both goods and can be purchased within 

the budget). Points 𝑐 and 𝑎 lie on the budget line but will not be preferred to 𝑒, since 𝑒 lies on a higher 

indifference curve and hence, gives higher utility to the consumer. The conclusion, called the: 

“highest indifference curve rule” is hence (p.101): “The optimal bundle is on the highest indifference 

curve that touches the budget line.” Furthermore, the ‘touching’ point is discussed in terms of the two 

curves being tangent to each other as they have the same slope at the point. The slope of the 

indifference curve is the Marginal Rate of Substitution (MRS), and the slope of the constraint is 

similarly the Marginal Rate of Transformation (MRT) of the constraint and is given by 𝑀𝑅𝑇 =

−𝑝1/𝑝2. Hence, at the optimal bundle point (or the point where utility is maximized) is given by 

𝑀𝑅𝑆 = 𝑑𝑞2/𝑑𝑞1 = −𝑝1/𝑝2 = 𝑀𝑅𝑇 which rearranged gives the formula 𝑑𝑞1/𝑝1 = 𝑑𝑞2/𝑝2. The 

formula shows that the last dollar the consumer spends on good 1 gets him/her as much extra utility 

as an extra dollar spent on good 2, so the consumer cannot increase satisfaction by spending more on 

either of the goods, which is because it is the point maximizing utility. 

Transition 

The short presentation here already shows that, although the two texts employ fundamentally similar 

graphs, they differ in the language that is used to describe and explain them (not just in the type of 

situation that the graphs are representing). The relationship between the contour line understanding 

of constrained optimization and the indifference and utility curve understanding is one part of the 

transition that students must establish. The context in the mathematics book is formal mathematical 

calculation exemplified through (with graphical digital tools) formally drawn graphs (3d and 2d), 

which gives the student the possibility to reproduce the graphs and verify the calculations him/her-

self. The focus is on understanding the situation from a three-dimensional perspective discussed 

through the plot on the 𝑥𝑦-plane. The graph in the economics book is more of a ‘thinking-tool’ used 

to support the verbal explanations of the economics concepts, and hence the utility function is not 



explicitly given. Instead of seeing the graphs as a three-dimensional plot on the 𝑥𝑦-plane, the students 

are directed to think about the level curves as bundles of goods making the consumer equally happy 

(indifference curves). The students are directed to think about ‘moving along’ the curve leading to 

equal satisfaction and ‘shifting to another curve’ meaning less or increased satisfaction (utility), while 

the budget constraint is fixed and out of the consumer’s control.  

In the mathematics text, the key idea of maximum point being the tangent point is verified concretely, 

by examining the values the objective function at the different intersection points of the graph. In the 

microeconomics text, the point maximizing utility, the optimal bundle is first discussed from the 

consumer maximization perspective and then theorised through the concepts of marginal rate of 

substitution and marginal rate of transformation. Students thus, have to make the transition from the 

mathematical understanding of finding the maximum as finding the points of the constraint that give 

the greatest value of the objective function, to the microeconomics understanding, which is that a 

consumer maximizes his/her utility at the point where the slope of the indifference curve is the same 

as the slope of the constraint, so that the curve is tangent to the constraint, which is where 𝑀𝑅𝑆 = 𝑀𝑅𝑇.  

Conclusion 

Within the space available here, I could only introduce how the concepts used in the introductory part 

to Lagrange’s method differed, but equally there are important differences in the transition of the 

other parts of the introduction to Lagrange’s method. Although the type of comparison that was made 

in our study and Xhonneux & Henry (2011), differed in target texts, audience and mode of analysis, 

our findings reinforce the point that Lagrange’s theorem is treated very differently according to the 

mathematics and the economics disciplines. The transition which is expected of the student between 

these books is demanding and perhaps signals the need for re-writing the mathematics textbook in 

terms of being more relevant for the economics ways of thinking about Lagrange’s theorem. 
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Mathematicians and physicists: a context of ontological divorce? 

Mathematicians and physicists have always worked together, and sometimes had both statutes. 

Mathematics are not only tools for physic since it sometimes generates physical entities long time 

before it had been observed, and physics is not only a field of application for mathematics, since it 

is an infinite space of inspiration and experimentation for mathematics. For instance, when the 

mathematical theory was not yet developed but mathematical procedures were already proposed, 

physics’ experimentations played a crucial role in determining the effectiveness of those procedures 

which then would be theorized (Visser, 2018). This was, for example, the case of calculus and 

infinitesimal procedures when both physicists and mathematicians agreed on why do such 

calculations may work (Garber, 1999). At the end of the nineteenth century, real numbers were 

submitted to logical constraints far away from physical concerns and their formalization signed an 

ontological gap between the two disciplines. The foundational work of Bourbaki’s group in the 

mid-1930s represents probably the apogee of that ontological divorce which led objects including 

real numbers that were shared by both disciplines not to have the same nature anymore (Plotnitsky, 

2020). At the end of the seventies this separation started to reverse since theoretical physicists 

(re)discovered the power of abstract mathematics (Urquhart, 2008). Yet in spite of this renewed 

interactions between the two communities, physicists’ methods of calculation do not achieve the 

"rigor" expected by the mathematicians (Davey, 2003).    

This paper is a preliminary report on an ongoing research project that aims to explore 

mathematicians and physicists’ ways to cope with calculations involving real numbers. In this 

paper, we focus on the particular case of a bouncing ball and the use of real numbers to grasp its 

"reality". It is acknowledged that Mathematics is broadly used in both the teaching and practices of 

physics. Many studies have highlighted differences in how the two disciplines use and interpret the 

mathematical objects. Redish et al. (2015) have stressed the need for more investigation of the 

meaning given by both disciplines to the same mathematical object. The aim of this paper is to 

initiate such investigation in the case of real numbers through the bouncing ball phenomenon by 

addressing the following questions: How to make clear the meaning given by physicists and 

mathematicians to real numbers in the bouncing ball phenomenon? Are they aware of the 

differences in these meanings, if any? If yes, how do they deal with in their teaching and scholarly 

practices?   

Reals and physics in the bouncing ball phenomenon 

When one study the throw of a ball; one has to know that the dynamic of the ball is a determinist 

phenomenon shaped by its initial conditions (height and speed). In order to mathematize the 

problem, physicists usually have to ask this question: What are the forces applying on the ball just 
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after the throw? The underlined expression permits to use Newton’s law of motion when weight is 

the only force that determines the dynamic of the ball, whereas in t = 0 (the time of the throw), the 

force of the hand also holds. For a physicist, this expression is meaningful because it has a physical 

reality. For a mathematician, if t = 0 stands for the time of throw, "just after the throw" corresponds 

to no time. More precisely, if t is the time "just after the throw" then t/2 is also just after the throw, 

and this expression (or expressions such as "immediately before the collision with the ground" in 

De Luca, 2021) is no more meaningful in the model of real numbers because of their density. Using 

Newton’s law of motion (the acceleration equals the sum of the forces at stake), the answer to the 

physic problem is purely mathematic: x" = mg where x is the position of the ball, m its mass, g the 

constant of gravity and x" the acceleration. Then x' = mgt + k, and x = 1/2mgt² + kt + h, and initial 

conditions (t = 0, x' = V0) are used to determine constants k and h.  

In the case of a bouncing ball, physicists use the bounce coefficient to determine the ratio between 

the successive heights when the ball hits the floor. For instance, we suppose that the ball is 

bouncing exactly to the half of its height, any other coefficient will give the same answer to the 

central question: does it stop of bouncing or not? From the equations above we can calculate the 

time of falling, the time of each bounce and then we can get the total time of bouncing which is a 

convergent geometric series: the ball is bouncing an infinite number of times in a finite time (De 

Luca, 2021). There are no more Zeno’s of Elea paradoxes for mathematicians since they have been 

solved a long time ago when real numbers and limit were formalized. For physicists the 

mathematical calculation remains problematic because they have to determine its consistency 

regarding the observed reality. This reality does not behave as reals do: if the time of bouncing is 

consistent with experimental measures, the number of bounces seems to be finite and heights 

become too small to be measured. Physicists are also not so keen on tolerating infinity. While they 

agree with the finitude of bounces by means of the limit process, they argue for a finite number of 

bounces by cutting the tail of the process using several arguments. One common argument is related 

to the precision of the height under which they decide that there is no more bounce. However, even 

reality is not so obvious to get since many factors are involved in the outcome of the bouncing ball 

phenomenon’s measures. For example, when one has to find the bounce coefficient, studies show 

that to measure it using the sound method, particles have to be very slightly deviated from the 

mathematical sphere (Heckel et al. 2016). Reality of the phenomenon differs of the theory because 

of tiny differences in experimental conditions and in method of measurements. According to 

physicists, whatever the nature of numbers that shape reality, we can only catch decimals from it. 

Thus, differences between reality and limit model are definitively buried in experimental precisions 

(De Lucas, 2020).  

The bouncing ball phenomenon constitutes a shared problem where both disciplines are at stake and 

specificities in dealing with (real) numbers appear as obvious. This preliminary study intends to 

identify the clues of mathematicians and physicists’ common culture and disparities in the use of 

reals to grasp the bouncing ball reality.  



 

 

An overview of the method 

As stated by the literature, both mathematicians and physicists seem to be aware of the bouncing 

ball phenomenon and both use limit process to determine the time of bouncing. Yet, while 

mathematicians do not see any more paradox, physicists feel always the need to give arguments to 

eliminate it. However, the relationship between differences in mathematical meaning and the 

current situation is an issue still relevant in the literature. To learn more about this issue, our 

experiment draws on data obtained from two open questions given to three French mathematicians 

and three French physicists. We seek to understand how these scholars may deal with the bouncing 

ball phenomenon in their teaching and scholarly practices. For that, we made the choice to clearly 

underline key literature results about this phenomenon before giving the questions. Our aim is to 

provoke the need to justify one’s choices as well as their interpretations. The preliminary discourse 

of the researcher was structured as follows: the context of the bouncing ball, the way it is usually 

solved with the laws of Newton and the paradox that emerges are explained. It is also explained that 

mathematicians are using the properties of reals to evaluate the time of bouncing using an infinite 

number of bounces and physicists usually use the concept of precision (the height of bouncing is 

lower bonded) to limit the number of bounces. Two open questions are then asked about the 

explained situation: 1) To what extent does this situation cause discomfort in your research 

practices? 2) How do you manage this situation in your teaching practices? 

Preliminary results 

Except one physicist who declare not to be ready to answer questions about this phenomenon which 

is neither his domain of research nor his domain of teaching, all the answers of physicists and 

mathematicians show a good knowing of it. The incapacity of one physicist to interact with our 

discourse and questions shows: 1) not all physicists are aware of the bouncing ball phenomenon 

even though it is a paradigmatic case of physicist practices with infinitesimal calculations; 2) not all 

physicists seem to have faced the complexity of this case in their own university specialized studies. 

While the three mathematicians agree with the researcher preliminary discourse about mathematical 

calculations for both disciplines, the two other physicists react unexpectedly to it. Despite their 

agreement with the finitude of the number of bounces according to the "reality", the physicists 

argue differently to express their disagreement with the researcher discourse.  

More precisely, one physicist believes that an infinite sum of times gives necessary an infinite time 

and that the time of bounces is only obtained by a limit since it is too hard to calculate all of the 

terms that fit a certain given precision. His explanations are mathematically contradictory since he 

accepts the use of the limit for pragmatic reasons but refuse the possibility of the finitude of the 

result of an infinite process. The other physicist rejects the possibility of an infinity of bounces 

since a certain force of Van der Waals is at stake and stuck the ball to the ground after a finite 

number of bounces (Falcon et al., 1998). According to this force, there is in fact a finite number of 

bounces and it is not a matter of precision or measurement. So, he does not feel any differences 

between mathematics and physics: when using the same models, they get the same results. This 

explanation is also mathematically contradictory since in one hand he refuses absolutely the 



 

 

possibility of the infinite number of bounces ("we know that it is finite, one just has to try") and in 

the other hand he accepts to use, in the same way as mathematicians, models implying infinity. 

A significant part of mathematicians and physicists’ answers does not tackle the two questions and 

remains at the level of discussion of the researcher’s preliminary discourse. This prevented to 

deepen the study of the impact of mathematical meanings on physicists’ interpretations of the 

phenomenon. However, almost all physicists and mathematicians notice the differences between the 

two disciplines and express the crucial need to address this issue and take into account students’ 

learnings requirements. They notice the benefit of working together as a teacher in order to facilitate 

the communication between the two disciplines. Mathematicians have specifically stressed the 

richness of the bouncing ball phenomenon and the necessity to guide students towards a better 

management of differences across the two disciplines.  

These preliminary results show stability in mathematicians’ explanation of the phenomenon and 

disparities among physicists’ answers. While both physicists agree that the mathematical model is 

not reality, their interpretation of this model is quite different. Particularly, they don’t seem to share 

the same epistemology regarding the mathematization of the bouncing ball phenomenon. The 

sample used in this study is very small; further investigation is needed for considering issues 

surrounding the question of the applicability of mathematics to the bouncing ball reality and vice 

versa.  
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“I forget about math when I go to physics” 
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California State University Fullerton, United States; mloverude@fullerton.edu  

Introduction 

This work is part of an ongoing collaboration to investigate student learning and application of 

mathematics in the context of physics courses. Our project seeks to study student conceptual 

understanding of the mathematics encountered in physics courses, to investigate models of transfer, 

and to develop instructional interventions to assist student learning.  

The mathematical function is a concept that pervades much of introductory mathematics and 

physics instruction. There is an extensive body of published research on student conceptions of 

functions in the Research in Undergraduate Math Education (RUME) community (Carlson 1998, . 

Despite this focus, the corresponding work in Physics Education Research (PER) has generally not 

explicitly attended to the function concept. The PER community has extensively studied student 

learning of one-dimensional kinematics in the context of position and velocity graphs [8-9], but 

very little of this work reflects understanding of related work in the math education community. A 

goal is to unite RUME and PER work on student understanding of the function in kinematics.  

Theoretical Perspective 

A prior analysis (Taylor & Loverude 2019) used the lens of conceptual blending (Fauconnier & 

Turner 2002). Blending posits that human knowledge is pervaded by metaphors constructed from 

bodily experiences, with knowledge activated at appropriate moments. In the blending framework, 

these resource groups are termed mental spaces. Bing and Redish (2009) and others have used 

blending to examine how students use mathematics in physics contexts.  

For this portion of the study, we have instead chosen to examine responses through the lens of 

transfer. Standard models of transfer presume decontextualized and portable knowledge. 

Differences between the context in which an idea was originally learned and a later problem are 

interpreted as “surface features.” Course prerequisites reflect such an understanding of transfer. For 

example, the expectation is that students learn derivatives in math, and then employ the well-

understood tool of derivatives in physics problems. 

Several studies have used transfer to examine student use of mathematics in physics. Cui et al 

(2006) reported on a series of tasks in which students were given isomorphic physics and 

mathematics questions involving integration. While students could execute acontextual integrals, 

most had difficulty setting up and evaluating relevant integrals in physics contexts; tasks perceived 

as simple transfer by experts were in fact challenging for students.   

This classical transfer model has been reexamined by several scholars, and our analysis is 

influenced by Lobato’s actor-oriented transfer and Wagner’s transfer-in-pieces. Lobato described 

studies of transfer considering the perspective of the learner, social situation, and context (Lobato 

2012). Transfer-in-pieces suggests that knowledge is highly context-sensitive, and that 

mathematical ideas perceived as experts as being “the same” require different supporting 

knowledge to be used in new contexts (Wagner 2006). New contexts do not introduce mere surface 

features, but rather require using different knowledge resources in order to see “the same thing.” 

Transfer is thus not simply a matter of possessing and employing a tool, but rather of broadening 

ones’ understanding of a concept to include the new context in which it is employed. 



 

 

 
Figure 1. Graphs for interview tasks. Figure 1a is adapted from Asiala et al (1997). The third graph is not shown but is 

described further in Taylor & Loverude (2019). 

Methods and analysis 

We designed a research protocol to probe student use of functions in physics. The protocol 

focused on three graphs (the first two are shown in Fig. 1). For the first, drawn from Asiala et al. 

(1997), students were asked questions relating to the function and its derivative based on the graph.  

The second was a physics kinematics graph (position vs. time) informed by PER results on student 

difficulties with position and velocity (see Fig. 1b), and is the focus of this paper. The third task 

(not shown) is described in previous work (Loverude and Taylor 2020) and was influenced by work 

by Moore and Paoletti (2015) on bidirectional reasoning.   

This research took place in the context of a two-semester introductory calculus-based physics 

sequence at a large public comprehensive university in the western United States.  The course is 

required for physical science and engineering majors, and sections are typically taught very 

traditionally by a variety of instructors, none affiliated with this research study.  The course uses a 

common introductory physics text and covers a fairly standard list of topics.   

We performed semi-structured think-aloud interviews with volunteer students [N=7]. Interview 

volunteers were chosen from among students who had recently completed the first semester course 

with grades of A or B; several were enrolled in the second-semester course.  All students had 

completed relevant instruction on kinematics as well as at least two semesters of calculus. Students 

came from academic majors including physics, engineering, and mathematics. Data were collected 

through audio and video recordings and transcribed for analysis. 

This analysis focuses on the task in which students were asked to determine a function v(t) for 

the motion of object 2. To answer, students were expected to assume constant acceleration (all did) 

and determine multiple values of velocity (typically at t=0 and at the local maximum t=6) by 

determining slopes of relevant tangent lines. Students could generate a graph of velocity versus time 

and/or do a symbolic calculation.  

Results 

Producing a function v(t) proved to be challenging for students. Five of seven ultimately 

constructed an expression with the appropriate functional form, but most required some guiding by 

interviewers. Many students had difficulty in interpreting the velocity at t=0, dividing x by t=0, or 

stating that the initial velocity must be zero or negative.  

The majority of students initially attributed the motion to a two-dimensional trajectory or 

projectile motion. Some students assumed that the acceleration was thus the free-fall value of g=9.8 

m/s
2
. After this confusion became apparent, students were coached by the interviewer to 

recognize the motion as one-dimensional when needed. 



 

 

As we are focusing on the experiences of students with transfer phenomena, we briefly describe 

two categories of responses that were coded as reflecting transfer issues, in which students 

articulated tension between practices in mathematics and physics. 

A.  More than just notation; y vs. x and x vs. t  

Many students expressed difficulty in reasoning with x(t) as opposed to y(x) as is more typical in 

calculus courses. Many students mislabeled functions at various times and/or articulated a 

confusion between graphs of y vs. x and x vs. t.  We might expect that students, like experts, can 

fluidly change between notations, but many students associated the graph with projectile motion as 

they articulated confusion about the axis labels and functional notation.  

For this section we focus on the responses of a single student, Student 6. When first examining 

the graph, she stated that it was “2-dimensional motion ‘cuz it’s on the x and y axis.” While 

incorrect, we interpret this as an (unproductive) example of transfer; the y vs. x graph of projectile 

motion has the same shape and the student recognized a parabola, writing f(x) = x
2
, then f(x) = y.  

After being directed to the axis labels and recognizing the motion as one-dimensional, the 

student expressed confusion between x of t and f of x. While determining the slope at t=0, she wrote 

f(t) = x and f’(t) = 3, then scribbled both out in frustration. 

 

S6: So slope, I don’t know if this has, let’s call this f(x). So f’(0) would be 3, right? If x is t, I 

don’t know. If x is t. I don’t know what I’m doing. 

… 

S6: Well, I was originally going to try to make this look mathematical with a whole function 

and everything, but if I had f(x) I guess I could do that. No that doesn’t make sense, f(t) is 

equal to x, I guess. Right, cuz at some time you get your value, so it’s really f’(t).  

 

We interpret her statement ‘to make this look mathematical’ as illustrating the tension between 

physics practice, primarily quantity-based, and those of function-based calculus instruction. This 

student, a math major, further articulated her confusion between different graphs: 

 

S6: In the math books, it’s always in terms of x and y, so it’s either gonna be x or x’ or x’’ … 

and then in physics, there’s like, well, no, this isn’t f of x’, it’s velocity … No, it’s f of x’! 

So, I guess it’s the same thing, it’s just written differently. 

 

This student was ultimately dissatisfied with her response, and continued to express frustration 

reconciling physics and mathematics conventions, as seen below. Nearly all of the students made 

comments about the notation and moving fluidly between the two sets of notation was not common. 

B. Mathematics vs physics  

Several of the students articulated a perceived difference between the mathematics used in 

physics and that in calculus. While experts might perceive the math in kinematics to be very 

closely aligned between the two disciplines, some students’ perceptions differ. 

One student constructed an equation for velocity as a function of time in a formal, mathematical 

way, using ordered pairs and slope-intercept form. When prompted to recall the kinematics 

equations, he was surprised to see that he had unknowingly "re-derived" one of them. 

 

I:  You did not [use]...kinematics equations... Would that have been relevant here? 

S3: ...let’s say this is velocity initial. Velocity final... Acceleration..., and time... this is v final 

equals acceleration times time plus velocity initial... So it’s the same equation?! I didn’t 

even relate that. 



 

 

 

A second student determined an expression y = ax
2
 + bx for the parabola and was attempting to 

take its derivative. After shifting to a function of time, he noted the t
2
 term and noted the connection 

to a physics equation with ½ at
2
. He was unsure due to inconsistent notation, and expressed doubt: 

 

S2: I feel like it’s not right because it’s not one of the fundamental equations we use in physics 

class. Where this is one of them and then v_f equals v_initial plus a t… Oh wait that’s the 

same. I don’t know. I’m sorry. 

 

Another student, frustrated after having written v(t) = -3/5x + 10, summarized her experience:  

 

S1: I have math and physics on different days, so I forget about math when I go to physics, I 

forget about physics when I go to math. 

 

The math major quoted above went so far as to say that the kinematics equations were not 

mathematics the way she thought about mathematics: 

 

S6: Not to, like, belittle this equation, but … there’s not really math to it. … I guess that’s dumb 

if I say I don’t think of this as a math equation, cuz it is. But I just thought of it as, just plug 

in your numbers, get an answer, go home. That’s it.  

 

Discussion 

Though this is a small sample and preliminary analysis, student responses reflect a recurrent 

tension between the calculus sequence and the mathematics encountered in physics. Physics 

instructors may well assume that transfer is trivial in the case of kinematics, but student experiences 

suggest that it is indeed necessary to develop additional knowledge to be able to see the 

mathematics and physics as ‘the same thing.’ Several students had realizations of this nature during 

the interviews. While this was encouraging, we might prefer that such connections would have 

occurred while they were taking the course.  

Despite the perception of physics as closely associated with math, students expressed 

differences between physics math and calculus. In the most extreme version, a math major stated 

that the calculations she did in physics didn’t seem like math to her. We note that function notation 

is used sparingly in most physics textbooks and courses. In the course text used by these students, 

function notation is used in the chapter on one-dimensional kinematics, but generally not thereafter. 

In other words, these tensions arise despite this material being the most closely aligned between 

physics and math practice. As the course continues, there are typically more symbols and 

parameters than students typically encounter in calculus courses. 

We suggest that it would be valuable for physics instructors to learn more of the research on 

student learning in mathematics and to reflect upon the differing conventions students encounter as 

they navigate these courses. Calculus instructors might also find it valuable to be acquainted with 

the practices of other disciplines and attend to interpretation. There is a need for additional explicit 

attention in both disciplines to the experiences of students as they navigate this material.   
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Integration and differentials in a textbook for engineering science and 

building materials 

Hans Kristian Nilsen 

University of Agder, Norway; hans.k.nilsen@uia.no 

Background and research question  

The relevance of mathematics in the education of different professions is an ongoing debate and the 

engineering education is no exception. In a recent study, we investigated first-year engineering 

students in a university in Norway, and their conceptions of integration (Nilsen & Knutsen, 2023). In 

the wake of the interviews with the students, a curiosity arose, related to the relevance of differentials 

and integration later in their education, specifically in more technical engineering courses. Rooted in 

the framework of anthropological theory of didactics (ATD), the following research question guides 

this paper: What characterizes the praxeology of integrals and differentials in a textbook on building 

materials? The intention with this research question is two-folded: 1) To investigate how integrals 

and differentials are accounted for in a mathematical sense and 2) To investigate the role these play 

in the actual subject matter content at hand. Both these aspects aim to illuminate how calculus is 

presented in engineering courses, versus the preceding calculus course. The goal is that an 

identification of possible differences, and an awareness of possible obstacles these might lead to when 

it comes to students learning, could be a valuable contribution to the body of research in mathematics 

education aimed at universities and university colleges.    

Theoretical framework  

This study, on calculus in textbooks for engineering courses, is highly inspired by González-Martín 

and Hernandes Gomes (2018), where engineering textbooks used in Brazil were analyzed. An 

anthropological theory of didactics (ATD) approach will be adapted, as the different praxeologies 

(Bosch & Gascón, 2014) provide a suitable vocabulary to describe the nuances in the different 

contextualizations of calculus. A praxeology or mathematical organization (𝑀𝑂) is the contextual 

basis for the mathematical content, where a type of task (𝑇) and certain techniques (𝜏) constitute the 

praxis. The logos consists of a technology (𝜃), which justify the different techniques needed and a 

theory (𝛩), which anchor the technology in an underlying historical developed set of mathematical 

concepts. For this paper, I will point to two different 𝑀𝑂’s relevant for integrals. 

I will refer to 𝑀𝑂1 as the “rigorous limit-based approach” (Nilsen & Knudsen, 2023), an approach 

which is used especially in the introduction to integrals in the engineering students’ calculus textbook. 

The core idea is that Riemann integrals are limits of upper- and lower bound Riemann sums, and that 

the Riemann-integral are “sandwiched” between these bounds. Besides the calculation of different 

integrals, the praxis involved in this approach are often linked to evaluating converging sums, and 

the logos rests on the limit concept.  

𝑀𝑂2 could be described as “the infinitesimal approach” and is not directly accounted for in the 

students’ calculus textbook but is implicitly present in the parts that deals with applications. The logos 

of 𝑀𝑂2 is rooted in Newton and Leibniz, where integrals are regarded as sum of bars with infinite 
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small widths. Later this approach was formalized through hyperreal numbers. The praxis of 𝑀𝑂2 

typically consists of tasks where differentials occur as slices or sections of actual physical magnitudes, 

which are to be “summed up” through integration techniques. 

Methods  

As a follow-up study of first-year engineering students’ interpretations of integrals, it was of interest 

to identify a “technical course” in their educational pathway, that contained integrals, and that came 

as close as possible to their calculus course in the first semester. This rests on the assumption that 

students’ first meeting with calculus in another subject would be of most significance for their 

possibility to link the content to the calculus course. In this context, “technical course”, refers to an 

engineering course where calculus concepts are not explicitly stated among the learning outcome 

goals in the official course plan, but still play a role in the course content. The actual course relevant 

for this paper is “science of engineering and building materials” (translated form the Norwegian 

course-name “Materiallære”) and occurs in the second year of three engineering study programs: 

mechatronic-, civil and structural-, and renewable energy engineering. The first two examples in the 

textbook for this course (Burstöm, 2021) where integrals explicitly appear, are treated. The first 

example concerns materials’ capillary transport, and the second example deals with materials’ 

deformation properties. Since the textbook analyzed does not contain any kind of activities or tasks 

for the students to solve, it is important to add that the analysis only focuses on examples that the 

textbook uses to mediate content that involves integrals. Hence “type of tasks” (as part of praxis), is 

interpreted as possible tasks, based on the examples presented. The focus of the analysis is therefore 

on how the mathematical notations and properties of the involved integrals are accounted for, and the 

role they play in the explanations of the physical phenomena at hand.  

Analysis  

The first example is from the chapter on “humidity” and a section with the title “humidity transport 

in liquid phase – capillary transport”.  

When a circular tube takes in water horizontally, the pore water pressure (under-pressure) by the meniscus is constant 

(figure 5.18). The under-pressure equals the capillary under-pressure (suction), 𝑠, given by the equation 5.9. If the 

distance between the meniscus and the surface area of the material is 𝑥1[m] the water velocity could be written:  

𝑣 =
𝑑𝑥1

𝑑𝑡
=

𝑟2

8𝜂
∙

𝑠

𝑥1
=

𝑟𝜎𝑐𝑜𝑠𝜃

4𝜂𝑥1
      (5.14) 

[…]. The time, 𝑡 [s], needed for the meniscus to reach the depth 𝑥1 could be found by equation 5:15: 

𝑡 = ∫
4𝜂𝑥1

𝑟𝜎𝑐𝑜𝑠𝜃
∙ 𝑑𝑥1 =

2𝜂

𝑟𝜎𝑐𝑜𝑠𝜃
∙ 𝑥1

2    (5.15) 

which also could be written 

𝑥1 = √
𝑟𝜎𝑐𝑜𝑠𝜃

2𝜂
∙ 𝑡    (5.16) 

Hence, the intrusion depth (and the absorbed amount of water) are proportional both to the square root of time and 

the square root of the radius.  

Example 1: Capillary transport (Burstöm, 2021, pp. 94-95, translated from Swedish) 



 

 

 

From the example, one observes few attempts of linking the subject matter content to terminology 

known from the calculus praxeology. The calculus involved is exclusively displayed through 

mathematical notations, and meaning making related to these is apparently left to the reader. 

Differentials and the associated notations are presented without using words like “differential”, 

“limit”, “sum” or “integral”, but are instead indirectly linked to physical magnitudes like “time”, 

“water velocity” and “intrusion depth”. The square root expressions being “proportional” is the only 

mathematical property that is explicitly described in the text. Since it is left for the readers to link the 

mathematical praxeology to the subject matter content, the MO is hidden, and can only be interpreted 

implicitly. The differential in the integral at hand is linked to a distance (intrusion depth), and the 

integrand is linked to fluid mechanical laws playing out in the circular “slice” of a tube at any given 

point along the intrusion depth. This interpretation somewhat fits the rationale of 𝑀𝑂2. 

The second example is from the chapter called “strength”, under the section “normal stress, 

deformation and fractures” and concerns the notion “line of work” (translated from Swedish 

“arbetslinje”).  

The tension perpendicular to a surface is called “normal stress” and is denoted as 𝜎 (sigma). In this case, 𝜎 =
𝐹

𝐴
. 

Influenced by the tension 𝜎, the rod prolongs by a piece ∆𝐿. The relation between the prolongation ∆𝐿 and the 

original length 𝐿 is called strain and are denoted by 𝜀 (epsilon). 𝜀 =
∆𝐿

𝐿
. […]. The term “line of work” is motived 

from the following: Assume that the force 𝐹 in figure 6.1 [figure omitted in this excerpt] gains a contribution 𝑑𝐹, 

leading to a length alternation contribution 𝑑∆𝐿. The required work (= 𝑑𝑊) then becomes: 𝑑𝑊 = (𝐹 +
𝑑𝐹

2
) ∙

(𝑑∆𝐿) ≈ 𝐹 ∙ (𝑑∆𝐿). When 𝐹 = 𝐴 ∙ 𝜎 and 𝑑∆𝐿 = 𝐿 ∙ 𝑑𝜀, one gets 𝑑𝑊 = 𝐴 ∙ 𝐿 ∙ 𝜎 ∙ 𝑑𝜀. The total amount of work for 

the prolongation, 𝜀1, of the rod becomes 𝑊 = ∫ 𝑑𝑊 = 𝐴 ∙ 𝐿 ∫ 𝜎
𝜀1

0
𝑑𝜀, that is the volume of the rod multiplied by the 

surface between the line of work and the ε-axle to where 𝜀 = 𝜀1. From the line of work one can read how much 

work a material can absorb by a given deformation or before it fractures.  

 

Example 2: Line of work (Burstöm, 2021, pp. 126-128, translated from Swedish) 

In contrast to the first example, the differentials involved are now explicitly accounted for, even 

though exclusively through physical interpretations. Terminology associated by the logos of calculus 

(i.e. limits, differentials, sums, integrals) is avoided also in this example, and it is left for the reader 

to draw such possible parallels. Further, mathematical notations are here used in a different way than 

in the case of 𝑀𝑂1, where the Δ in Riemann sums represents the interval ∆𝑥𝑖 that approaches 𝑑𝑥, as 

the length of all subintervals approaches zero. Not only are ∆ and 𝑑 used differently, but they are 

combined in an unusual way, through 𝑑∆𝐿. A sum-based interpretation in line with 𝑀𝑂2 characterizes 

𝐴𝑟𝑒𝑎 = ∫ 𝜎𝑑𝜀
𝜀1

0

    



 

 

the example as all the differentials are equated with actual physical magnitudes without any emphasis 

on limits. The word “contribution” in different variants enforces this interpretation.  

Discussions and conclusions  

These two examples might represent challenges related to connecting the content to associated 

praxeologies in calculus, when students encounter integrals in other subjects than mathematics. The 

logos (technology and theory) of calculus is at best rudimentary traced, in the examples provided. In 

the first example the differentials and integrals involved are not accounted for in the text, neither 

through explanations nor proper definitions. Hence, what the integral actually does is left to the reader 

to interpret. In the second example, the involved differentials are associated with physical 

magnitudes, interpreted respectively as force- and length “contributions”. The integrals tacitly 

illustrate a sum, in line with 𝑀𝑂2. The differences identified, between how integrals are presented in 

the calculus course and this technical course, might constitute a challenge related to both the 

technology and theory of the calculus praxeology, especially related to 𝑀𝑂1, and how integrals 

normally are introduced. The need for engineering students to conceptualize integrals as sums of 

actual physical magnitudes has been pointed out also in other studies (e.g. Jones, 2015) and hence the 

learning outcome of 𝑀𝑂1 might be questioned, for this group of students. Further, it could be of 

importance for university teachers to be aware of the differences between how notations and 

expressions are interpreted in calculus courses, compared to technical engineering courses, where 

calculus is being applied. This probably applies both to the teachers of technical courses and to the 

calculus teachers, as both the examples demonstrate the need for prerequisite knowledge which 

includes flexibility in notations and a highly developed 𝑀𝑂2. 
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Introduction and theoretical background 

The use of math in physics differs from the use of math in math classes. In particular, physicists 

interpret equations differently from mathematicians since they imbue symbols with physical meaning 

(Redish & Kuo, 2015). In this paper we present findings indicating that physics students in Israeli 

high schools also engage differently with graphs. Many are influenced by their experiences using 

graphs in physics when engaging in covariational reasoning and when relating to rate of change (RoC) 

and accumulation. They view RoC as a physics concept. They view their reasoning with graphs in 

physics as thoughtful and meaningful, and their activity in math as procedural and technical. 

Methodology 

We interviewed over 50 Israeli 11th and 12th grade students studying advanced track math on various 

calculus items centered around either RoC or accumulation. The items varied in context, either intra-

mathematical (function values, area) or extra-mathematical (motion, filling a pool, temperature 

varying during a day). Each item presented a function verbally, algebraically, and/or graphically, and 

a question concerning RoC or accumulation (e.g., what is the meaning of the statement ‘the RoC of 

f(x) at x=3 is 0.47’?). Students were presented with 5-8 answers given by hypothetical people, and 

showcasing different possible ways of thinking (e.g., ‘for me, the meaning is that if we graph the 

function, the slope of the tangent at x=3 will be 0.47’). The students were asked to reflect on these 

answers. Each student was interviewed separately on one or two items. Student were told that they 

would be interviewed concerning ways they think about mathematical notions. They were also told 

that the interviewer was not interested in right or wrong answers, but in their ways of thinking, and 

all answers were essentially correct. Of the students interviewed, 21 also studied physics. The 

interviewer did not mention physics at any stage unless the student brought up their physics studies. 

The interviews were audio-recorded and transcribed in the framework of a larger project. While 

examining the transcriptions we noticed many students referred to their physics studies and decided 

to investigate this. We analyzed the transcripts, searching for utterances that included the terms 

‘physics’, ‘math’, ‘calculus’, etc. Then we coded all relevant utterances using grounded theory, 

searching for patterns and common themes between interviewees. A partial list of themes follows. 

Findings and discussion 

In the interviews, though the problems were presented as math problems, and the students knew the 

research centered around the way they think about mathematical concepts, 16 students of the 21 who 

study physics related to physics in their reasoning, using phrases such as: “really, all I am saying right 

now is just from physics”, “can I explain, physics? Like, the way I see it”, “all these things are more 

related to physics than to math for me”.  
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Math is technical while physics requires thought 

The theme that stood out to us first was the claim that math involves rote procedure whereas physics 

involves thinking. The perception of math as rote technique was not unique to physics students and 

appeared also among students who do not study physics. The following is a partial list of quotes from 

different interviews; physics students are marked (p), and students who did not study physics (np): 

Bar (p):  Math is usually very analytical and technical thinking, and working according 

to steps, but physics is really more thinking about what you’re doing 

Lynn (np):  I think I learned more [in the interview], not even learned, like more used my 

reasoning rather than a formula […], like I really enjoyed using my brain. 

Because I, it doesn’t happen a lot in everyday math learning. 

Sam (np): This isn’t math. Right, it isn’t standard, it isn’t computational. 

While six students related math to rote procedures and physics to more in depth thought, only two 

students contended that physics is technical. 

Ray (p): We don’t really study integrals in physics. Like… they just show us formulas 

and then tell us ‘use them’. We don’t really study how to get to them so, we 

didn’t encounter integrals at all in physics. 

Only one student contended that math isn’t technical: 

Yanai (p):  [My teacher] emphasizes explaining everything behind the math. Not just 

remembering this formula or that, but also understanding where it comes 

from, and… it really, it really got me to appreciate math, because I’m like oh, 

wow! There are four hundred different explanations to everything, and it all 

works together. 

Graphs in physics are more meaningful to students than in calculus 

Another theme that arises in the interviews is that the participants refer to different practices when 

solving problems in physics and in math. The main difference concerns working with graphs in 

physics. Of the 16 physics students who related to physics in their explanations, 12 referred to graphs 

in physics. Some of these students contrasted working with graphs and the rote nature of working 

with algebraic expressions in math: 

Tal (p): But in physics it was just like more understanding, it was deeper. You need 

to understand it for graphs and stuff… in math it was just equations. 

Bar (p): And in physics I really, every time I have to think about what I need to do, 

and we have a lot of work with graphs. There are a lot of questions about 

graphs – is the velocity squared? is the velocity with constant acceleration? 

And we don’t have that in math. 

This finding is intriguing since in the Israeli math curriculum, textbooks, and final exams, the majority 

of calculus questions involve graphs – constructing a graph from an algebraic formula, graphically 

finding graphs of derivatives and antiderivatives and the connections between them, etc. Thus, we 

initially found it surprising that physics students consider working with graphs as a practice used in 

physics and not so much in math. Closer examination of students’ statements reveals what they mean 

by ‘working with graphs’ in further detail. Due to space limitations, we present only the statements 

made by Tal; other students made similar, less detailed comments. 



 

 

Tal (p): A lot of times [in physics] there is like a reference to the proportionality 

between variables. Like in formulas – directly proportional, inversely 

proportional – it’s really in my head all the time, and also the way you see it 

in the graph. […] And then how you see it, it just helps to understand things 

[…] but I’m like talking about the thing of, how you see the function in the 

graph, and like the meaning of, for example in tenth grade we learned 

kinematics and there was the connection between velocity-acceleration-

distance. So, everything is like a derivative of one another.  

Tal (p): [In physics] graphs that was like distance to time and you had to calculate the 

velocity, and it wasn’t a linear graph it was like say a parabola. 

Tal’s account of working with graphs in physics reveals two main aspects. First, students can use 

graphs to reflect on covariation of quantities as is evident from her statement on proportionality. 

Covariational reasoning is not strictly necessary in Israeli final exams in math and does not appear in 

current textbooks. Ergo, we may assume that in many classrooms it is not cultivated. Second, graphs 

in physics represent real-world entities such as distance, velocity, and acceleration, whereas in the 

math curriculum, there is little use of extra-mathematical context in calculus. Moreover, in the latter 

quote Tal describes a situation where a given graph is made use of to find the size of such a quantity. 

This finding is strengthened by some statements made by students who do not learn physics: 

Lynn (np): When we just started learning graphs, a really long time ago, they taught us 

that it jumps like steps, so the step of the height will be smaller with time than 

the step…the step of the height will like decrease, and the step of the time 

will remain the same, so slowly the graph is like advancing at a slower pace 

upwards than downwards. 

When Lynn uses covariational reasoning she needs to invoke experiences from very long ago. She 

does not relate to her current calculus studies, but rather to learning linear functions in middle school. 

Rita (np): Basically, in questions in tests and stuff, obviously I’ll look at the function 

first and not at the graph. But if I have a graph, it helps me understand. 

For Rita, even though graphs are useful for understanding, considering the graph is secondary, not 

suitable for tests. This suggests that it is deemed less correct or less mathematical. 

RoC is related to physics and not to calculus 

A third theme present in the interviews is that the students view RoC as a concept related to physics 

and not so much to calculus. This agrees with the previously discussed finding that engagement with 

graphs in physics is related to covariational reasoning. This was particularly evident when students 

were asked if they are familiar with the term RoC from school: 

Ira (p): Yes, in physics, we do a lot of graphs. 

May (p): In physics mostly, because we talked about graphs in physics, and then we 

talked about RoC. 

Yanai (p): So, I, because I learned functions in math before I learned it in physics then, 

the RoC of the distance was always just a word to me, a phrase that says slope. 

[chuckles] 

Interviewer: So, did you hear the term RoC in math as well? 



 

 

Yanai (p): Not so much, no. I heard it when I got into physics. About the first thing we 

learned was velocity-time and position-time graphs. And there you talk about 

RoC constantly, which is just the slope of the graph. 

While the concept of RoC appears in the seventh and eighth grade math curriculum in Israel, 

particularly in relation to linear functions, up until recently it has not been a part of the high school 

curriculum. Furthermore, high school math textbooks and exams do not incorporate extra-

mathematical contexts in calculus. Thus, this finding is not surprising.  

Next year Israeli high schools will implement a new math curriculum that includes concepts of RoC 

in calculus. The introduction of the new curriculum could have a significant effect on students’ 

conceptions of RoC and calculus. On the other hand, the concept of accumulation and the 

accumulation function have been gradually introduced into exams in recent years. While more 

students accepted accumulation to be a mathematical concept, many still did not identify with this 

way of thinking and some still considered it to be less ‘mathematical’. 

Dale (np): [On accumulation] I marked it as […] not so close to what I thought, because 

I thought about the integral, about the formula, about math, formulas, 

plugging in and stuff like that, and they were looking at it more differently, 

like there is somehow a line maybe, that shows how the water progressed 

from there to here. 

Shaked (p): First of all, [accumulation] relates a little less to the world of math [than area], 

that bothers me a little […], [accumulation] seems like a word that describes 

something less accurate, a little more generalized I would say. So, umm, if he 

were to say volume, like that is also similar, but […] sounds more accurate to 

me, more specific. The word accumulation seems more generalizing. 

Concluding remarks 

In conclusion, the vast majority of physics students we interviewed related to physics when asked to 

reason in calculus. Thus, it appears that Israeli physics students are highly influenced by their 

experiences in physics when engaging in calculus problems that involve covariational thinking, RoC 

and accumulation. They relate the practices they use to physics, rather than to math. 

The three themes presented are strongly connected. Students relate RoC and covariational reasoning 

to working with graphs in physics and relate calculus to thoughtless symbolic procedures.  

Thus, we surmise that engagement with graphs that represent quantities in math lessons could foster 

development of covariational reasoning, as well as concepts of RoC and accumulation among math 

students, while making the experience of math learning more ‘deep’ and less ‘technical’. 
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Introduction 
The dichotomy between procedural and conceptual knowledge has been studied extensively in 
mathematics education in general and in higher education (Rittle-Johnson & Schneider, 1999; 
Engelbrecht, Bergsten, & Kågesten, 2012). Often it is conjectured that more conceptual 
understanding is needed while in actual teaching procedural techniques dominate (although already 
Rittle-Johnson and Schneider (2015) emphasized that they are intertwined). The importance of 
conceptual knowledge goes without doubt, although its components and the ways to measure it are 
less elaborate than for procedural knowledge. Among the research strands that investigate conceptual 
knowledge in calculus is the work on basic mental models (Greefrath et al., 2021). This identifies 
conceptual dimensions, but they are all rooted in the praxis of typical German high school teaching.   

If strengthening conceptual knowledge is to be effective, it must be conceptualized in a way that 
respects the structure of the field that mathematics will finally be applied to. This paper investigates 
the techniques of multivariate integration by parts together in detail and some additional examples.  

Research hypothesis: When a body of mathematical knowledge gets transposed from pure 
mathematics to an application field, the classification as procedural or conceptual may change. 

Methodology and Theory 
The first underlying methodological framework of this research is the anthropological theory of the 
didactic (ATD; Chevallard, 2019). It models knowledge by praxeologies 𝓅 = [T / τ / θ / Θ] where T 
denotes a task or a type of tasks, τ is a technique to solve it, θ is a technology that explains τ, and 
finally Θ is a theory that justifies θ. This is applied to integration by parts. 

Integration by parts underlies the mathematical task (taken from Höllig and Hörner (2021, p. 251)) 
𝑇!=”Calculate ∬ (𝑥 + cos(𝑦)) ⋅ 𝜕"exp	(−3𝑥# + 𝑦#)ℝ! d𝑥d𝑦”. The transposition of partial 
integration to physics is exemplified by 𝑇#=”Calculate the energy density in electrostatics”. Both 
tasks use (among other things) the technique to rewrite an integral according to the multivariate rule 
of integration by parts. This part of  𝜃 is essentially the theorem that for scalar functions 𝑢, 𝑣:ℝ% ⊃
Ω → ℝ with adequate properties of integrability and differentiability one has ∫ 𝑢 ⋅ 𝜕""& 𝑣	𝑑Ω =

∫ 𝑢 ⋅'& 𝑣 ⋅ (𝑒( ⋅ 𝑛)𝑑Γ − ∫ 𝜕""𝑢 ⋅& 𝑣	𝑑Ω, where 𝑒( is the 𝑗-th unit vector and 𝑛 is a normal vector on the 
surface 𝜕Ω of the region Ω.   This theorem and thus θ rests on the theory of multivariate integration 
Θ as foundational theory.  We will investigate the praxeologies 𝓅i = [𝑇) / τi / θ / Θ], 𝑖 ∈ {1,2}.  

The second underlying conceptual framework is the distinction between conceptual and procedural 
knowledge (Engelbrecht, Bergsten, & Kågesten, 2012; Rittle-Johnson & Schneider, 2015). Rittle-
Johnson and Schneider discuss several possible definitions but conclude simply “there is general 
consensus that conceptual knowledge should be defined as knowledge of concepts” and that 



 

 

“procedural knowledge is the ability to execute action sequences (i.e., procedures) to solve problems”.  
Rittle-Johnson & Schneider (2015) have stated that “conceptual and procedural knowledge cannot 
always be separated”. This is not by accident similar to the blury distinction line between syntactical 
and semantical test items (Oldenburg, Hodgen & Küchemann, 2013). Girard (1989, chapter 1) links 
this to the relevance of “sense” in the sense of Frege and it is mainly the sense that is affected by 
transpositions. 

The mathematical praxeology 𝓅1  
Solving task T1 in mathematics will typically be taught and exercised in the following manner: One 
uses the above given theorem on partial integration for a circle of some large radius 𝑅 and estimates 
that the surface integral (in this case a line integral) will approach 0 as 𝑅 → ∞ because the integrand 
decreases fast enough. Thus, one has in the limit of integrating over all of ℝ* that 
∬ (𝑥 + cos(𝑦)) ⋅ 𝜕" expM−3𝑥# + 𝑦#Nℝ! d𝑥d𝑦 = 

0 −∬ 𝜕"(𝑥 + cos(𝑦)) ⋅ expM−3𝑥# + 𝑦#Nℝ! d𝑥d𝑦 = −∬ expM−3𝑥# + 𝑦#Nℝ! d𝑥d𝑦 = −2𝜋  

(where the last integral is worked out using radial coordinates). Thus, to solve T1 one applies a 
technique 𝜏! that relies on 𝜃 and consists of approximating the integral over the unbounded ℝ# by 
integrals over disks and taking the limit of the radius. I argue that the praxis part [𝑇! / τ1] is procedural, 
because one is interested in the result (a number) and this result can be obtained by procedural, even 
algorithmic working style. This can be demonstrated by the fact that the whole calculation process 
can be carried out by computer algebra systems (although one may need to initiate the coordinate 
transformation by hand), it is guided by the structure of the expressions alone. No further conceptional 
considerations are necessary to arrive at the answer required by the task.  

The physical praxeology 𝓅2  
Task T2 must be described in a bit more detail. A distribution of charge in space described by a charge 
density function 𝜌:ℝ* → ℝ will store some energy due to the forces between charged particles 
(Jackson, 1975, p. 46). The charge in space defines a potential Φ:ℝ* → ℝ that gives raise to the 
electric field strength 𝐸 = −∇Φ. Moreover, one knows that the Poisson equation ∇#Φ(𝑥) =
−4𝜋𝜌(𝑥) holds. The potential and the charge combine to give the energy of the charge distribution 
according to 𝑊 = !

#∫𝜌(𝑥)Φ(𝑥)𝑑
*𝑥. Plugging in the Poisson equation one gets 𝑊 =

+!
,- ∫(∇

#Φ(𝑥))Φ(𝑥)𝑑*𝑥. The physical interpretation of this is that the total energy is summed up from 
the charges (i.e. ∇#Φ(𝑥)) weighted by their potential Φ(𝑥). Now, perform partial integration to get 
𝑊 = !

,- ∫∇Φ(𝑥) ⋅ ∇Φ(𝑥)𝑑
*𝑥 = !

,- ∫ |E|
#𝑑*𝑥 (the border integral is, just as in T1, zero). Thus, the 

energy density is now expressed in terms of the electric field. This insight is not just the result of 
applying a procedure. Instead, it requires conceptual considerations and interpretations. This is true 
even if the technology 𝜏# applied here contains much of the same calculations as 𝜏!, but it extents 𝜏! 
by the physical interpretation of the transformations applied. Within 𝜏# a transformation is not just a 
syntactical manipulation to get closer to the desired answer (that can be understood without), but it is 
a transformation of the meaning of the expression. Let’s explain the difference for the sub-technology 
of seeing that the border integral does not contribute. In 𝜏! this is a standard limit argument that relates 



 

 

the length of the curve and the maximum of the absolute value of the integrand to infer from the 
formula that for 𝑅 → ∞ the integral will vanish. The argument from 𝜏# that allows to omit the border 
integral is different. No concrete function is given and thus the vanishing cannot be inferred. Rather, 
it follows from general physical principles that fields tend quickly to infinity. Furthermore, the 
knowledge that integration by parts should be applied comes in 𝜏! from the syntactical properties of 
the expression (the first factor is linear in 𝑥), while in 𝜏# such a syntactical clue is completely missing. 
Thus, while in 𝓅1  transformational procedures are guided by the structure of the expression which 
can itself be analyzed procedurally, in 𝓅2 it is understanding of the concepts that guides the process 
and indicated what final form is sensible (i.e. has sense). Summarizing, the same integration by parts 
turned out to be a syntactical tool to solve T1, but a conceptual tool to switch the way in which the 
physical reality is described in T2. The passage from 𝓅1 to 𝓅2 is indeed an example of a didactical 
transformation, not just an application mathematics, because the arguments and strategies differ. For 
example, the fact that the border integral vanishes is justified by different arguments.  

Further examples 
Such examples of conceptual use of partial integration (rather than just procedural use to calculate 
some results) are not rare and not limited to electrodynamic: proving that Coulomb’s law and 
Maxwell’s first equation are equivalent (Jackson, 1975, p. 33), derivation of the Klein-Gordon 
equation, derivation of Euler-Lagrange equations etc. The last example brings out the conceptual 
nature of partial integration very clearly because it allows to trade in the change of a variation to the 
variation itself.  Moreover, classifying integration by parts as procedural knowledge gives no 
adequate description of the way physicists calculate with the derivative of the Dirac delta distribution: 
To evaluate an integral like ∫ 𝑓(𝑥) ⋅ 𝛿.(𝑥) ⋅ 𝑑𝑥/

0 	 with 𝑎 < 0 < 𝑏 physicists will apply integration by 
parts: ∫ 𝑓(𝑥) ⋅ 𝛿.(𝑥) ⋅ 𝑑𝑥/

0 = 𝑓(𝑏)𝛿(𝑏) − 𝑓(𝑎)𝛿(𝑎) − ∫ 𝑓.(𝑥) ⋅ 𝛿(𝑥) ⋅ 𝑑𝑥/
0 = −𝑓′(0). This is 

conceptual because it extends the notion of derivative to a new kind of object. 

What has been established by now is that what may appear procedural in one praxeology is conceptual 
in another praxeology. But the situation may even be more drastic, as a look into computer science 
indicates. Consider the mathematical data structure of a tuple of objects, e.g. the tuple of coordinates 
of a point in the Euclidean plane. This is a (simple) concept and knowledge about tuples is therefore 
conceptual. Mathematical knowledge regarding functions defined by an expression or more generally 
by an algorithm might be classified to be procedural knowledge. However, it is well known (see e.g. 
https://web.mit.edu/6.001/6.037/sicp.pdf, p. 125, for a practical implementation) that the concept of 
tuple (and hence their complete semantics) can be defined by procedures (hence, data are procedures). 
However, this insight can be deepened: Knowledge of algorithms and how to carry them out seems 
to be procedural knowledge. On the other hand, proofs in mathematics are often considered to carry 
mathematics’ conceptual knowledge (e.g., Hanna & Barbeau, 2008). However, the celebrated Curry-
Howard correspondence (Girard, 1989; Thompson, 1991) states that proofs (at least of constructive 
logic) can be turned into strictly typed functional programs and vice versa. This blurs the distinction 
fully – at least at an abstract level. The lesson is obviously that being conceptual or being procedural 
is not a property of some piece of knowledge per se but of the concrete praxeology where it is applied. 



 

 

Conclusion and Outlook 
The examples elaborated above have given support to the research hypothesis stated in the 
introduction. There are many further examples that go beyond the scope of this paper. A first 
consequence is that when teaching mathematical analysis and calculus for applied sciences the 
lecturer should investigate the role of the subject played in the application domain. Especially, a 
teacher educated in pure mathematics may consider some learning objectives to be procedural and 
based on this classification may decide to give them little weight although in an application area these 
procedural techniques acquire a conceptual meaning. In the age of computer algebra system students 
don’t need to know integration by parts and by substitution to find antiderivatives. Thus, these topics 
have been removed from German high school curricula. However, many students will need them as 
conceptual tools in STEM university courses.  In research, one should be aware that the distinction 
between procedural and conceptual can only be made relative to a certain praxeology, but not 
absolutely. Hence, interpretation of results of such studies must investigate the concrete praxeology 
and should be careful when stating conclusions for distinct praxeologies.  
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Rationale and research aims 

In recent years there is a growing recognition of the diverse roles of calculus in STEM education, and 

of the limited success of calculus education to provide students with effective scaffolding throughout 

their different academic pathways (Biza et al., 2022). For example, Jones’ (2015) findings indicate 

that many activities and approaches emphasized in the teaching and learning of calculus are generally 

less relevant for physics students for investigating and making sense of various physics situations. 

One suggestion for better alignment of calculus education with the different needs of mathematics 

and physics students is to place greater emphasis on numerical approaches, and specifically on the 

notion of approximation (Sofronas et al., 2015). Sofronas et al. (2015) suggest that the notion of 

approximation can be a unifying thread in calculus curricula and provide powerful metaphors that 

could support the conceptualization of mathematical objects, as well as powerful tools for calculating 

and applying these objects. The question remains, how can the notion of approximation be used in 

secondary calculus lessons to promote numerical sensemaking and to connect calculus and physics.  

The premise of this study is that the promotion of numerical sensemaking at secondary mathematics 

(SM) education requires multifaceted knowledge and expertise that does not lie within the confines 

of any sole stakeholder in mathematics education (Pinto & Cooper, 2022). Among other things, 

suggesting feasible and meaningful ways to engage students with numerical sensemaking in calculus 

lessons require subtle understanding of numerical approaches and perspectives, as well as deep 

familiarly with the SM curriculum and with the professional obligations that underlie SM teaching 

(Herbst & Chazan, 2022). Accordingly, our research strategy relies on bringing together SM teachers, 

mathematicians, and physicists to jointly inquire into why, when and how SM students should be 

engaged in numerical sensemaking (Pinto & Cooper, 2022). This paper builds on a two-year 

collaboration between the two authors in such a community of inquiry within the M-Cubed project 

(Pinto & Cooper, 2021). The first author has a PhD in Mathematics and is currently a full-time 

Mathematics Education researcher. The second author is a full-time Physics professor, who has been 

teaching physics in 10th-12th grades for the past eight years. In M-Cubed, we have been watching 

videotaped SM lessons together with another physicists, two mathematicians and eight practicing SM 

teachers, and discussing mathematical and pedagogical issues that we recognized therein. Often, 

while discussing concrete instructional situations, we found ourselves also reflecting on differences 

between how mathematics is taught and experienced at school, and how it is used and perceived in 

science, and specifically in physics. In this paper, we describe two episodes from M-Cubed where the 

participants engaged in such reflections in relation to the notion of approximation. 

Case 1: Making sense of asymptotes 

The trigger for this sensemaking episode emerged when the SM teachers examined how the two 

mathematicians and two physicists in the group approached various questions in the Israeli high-track 
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matriculation exam, and then reflected on how these approaches relate to the approaches taught at the 

secondary level. One calculus problem asked to explore some properties of the function 𝑓(𝑥) = 𝑥 +

ln(𝑥2 − 3) and sketch the graph of f(x). One teacher, T1, took note of how the physicists in the group 

immediately observed that f(x) behaves asymptotically like y=x. T1 found this very surprising since 

according to the definition of asymptotes in the Israeli SM curriculum (Eisenberg & Drefyus, 1993), 

y=x is not an asymptote of f(x), and in fact f(x) has no asymptotes. The discussion that followed 

highlighted that neither the physicists nor the mathematicians were sure what asymptotes are, even 

though the notion of asymptote is central in secondary calculus. Moreover, the physicists found it odd 

that the SM curriculum focuses on the difference between two functions at infinity since it is generally 

far more useful to examine the ratio of two functions at infinity. The fact that the ratio of two functions 

may tend at infinity to 1 while the difference between the functions may tend to infinity was new to 

some of the teachers, and T1 shared that it revealed to her a ‘strong misconception’ she had about 

asymptotic behaviors of functions. Several teachers noted after the meeting that they checked with 

GeoGebra that they cannot distinguish between the graphs of 𝑓(𝑥) and 𝑦 = 𝑥  when ‘zooming out’.  

We recognized in this discussion an opportunity for numerical sensemaking: (Q1) What could be the 

advantages of each definition of asymptotic behavior (via difference or via ratio) for approximating 

functions? (Q2) What could be the rationale for focusing at secondary calculus on difference-based 

approximation rather than ratio-based approximation? (Q3) What could be the affordances of 

engaging SM students with both definitions? In the following M-Cubed session, the authors 

facilitated a discussion around these questions, suggesting that they warrant exploration since 

physicists seem to find ratio-based approximations much more useful than difference-based 

approximations. This rationale did not resonate at first with all the teachers. For example, T1 stated 

that the issue “is not interesting” since “it is a matter of definition”. Nevertheless, the teachers seemed 

intrigued by questions Q2 and Q3, which appealed to their expertise, and provided several insights. 

For example, the teachers observed that the notion of asymptote may be more appropriate for learning 

about functions, since it is more concrete for students, easier to verify, and more helpful for sketching 

graphs. One mathematician, reflecting on her teaching in undergraduate calculus courses, agreed and 

observed further that she uses asymptotes mostly for didactical purposes, whereas ratio convergence 

tests have many applications in the courses. Another teacher observed that it can be very hard for 

students to comprehend the difference between “convergence to zero” and “neglectable” because of 

the everyday uses of the word neglectable in Hebrew. While the teacher did not refer explicitly to 

approximations, she seemed to suggest that having more than one definition of approximation may 

be too difficult for SM students. The meeting concluded with several teachers noting the striking 

different perspectives on asymptotic behavior of functions. However, the teachers generally did not 

seem to see sufficient pedagogical value in bringing these different perspectives to class. 

Case 2: Why approximate when we can be precise? 

Often, the videotaped lessons we watched revolved around computations that involved pi, e, the 

derivative of a function at a point, or the area under a graph. The physicists in our group observed 

that while the in the lessons, these computations are implicitly conceived as precise, in reality, such 

computations are based on approximations. To emphasize this point, the second author proposed in 

one M-Cubed session to engage SM students with the following question: Calculate the area under 



 

 

the graph of 𝑓(𝑥) = 𝑥2 in the interval 0 ≤ 𝑥 ≤ 1, in as many ways as you can, without using 

antiderivatives. The participants in this session were eight SM teachers, two mathematicians, and the 

two authors. The participants worked on this problem in pairs for about 45 minutes, then compared 

various solutions and discussed implications for SM teaching. Altogether the group worked out eight 

solutions that represent four general approaches to calculate the area in this case, two that obtain the 

precise area, and two that provide approximations. In general, the problem was new to most teachers. 

Some teachers could not suggest any approach to work on the problem without antiderivatives, while 

others noted that they present in class calculations of Riemann sums with a small number of 

rectangles, and in some cases use technology (e.g., Geogebra) to illustrate finer approximations. 

However, it appears that teachers had no prior experience with calculating the limit of Riemann sums, 

and some teachers may have not even considered it possible to obtain a precise result or even define 

the integral without the use of antiderivatives. In addition, most teachers reported that Riemann sums, 

and more generally approximations of areas, are not addressed in class beyond the introduction of 

integrals (if at all), and that there is no aim of developing students’ approximation skills.  

Participants’ perspectives about why and how this problem, or some variation of it, could be used in 

a SM classroom were highly diverse. Specifically, the mathematicians and physicists emphatically 

supported addressing this problem in class, whereas almost all the teachers rejected it, just as 

emphatically. For example, one mathematician argued that this is one example where students can 

use finite sums of areas of rectangles to obtain approximate estimates, hinting that the answer is close 

to 1/3, as well as find the limit when the number of rectangles approaches infinity and be convinced 

that the result is precisely 1/3, and not some other close number such as 1/𝜋. In this way they can 

directly appreciate the power of Riemann sums. Furthermore, the mathematician emphasized that 

calculating the area numerically in this case is important because the mathematics here, while perhaps 

not trivial, is still elementary, namely, does not rely on ‘black boxes’ that students are told to use 

without understanding. Another argument for using the problem in secondary calculus was that in 

practice, in physics (and in other disciplines), antiderivatives can often be too complicated to use, and 

that numerical approaches for approximation are used instead. The teachers saw little value in 

addressing this problem in class, considering the costs of doing so (e.g., class time, too difficult for 

most students). They also argued that the computations involved in calculating Riemann sums are not 

a technique that students are expected to learn, and as such have little pedagogical value. Another 

argument was that there are more important ideas to discuss in relation to the integral, for example 

discussing why it is valid to consider (an infinite number of) rectangles with zero side lengths. The 

main value teachers seem to find in the problem is that it may illustrate to students how complex it 

can be to find the area under a graph of a function, even in relatively simple cases. As a final note, 

after the meeting, several teachers took the problem to their class, curious to see how their students 

will respond, and shared with their group their students’ creative solutions.  

Discussion 

The two cases we have described can be seen both as encouraging or as discouraging with respect to 

promoting numerical sensemaking in secondary calculus. The cases are encouraging in suggesting 

that there may be many places in the SM curriculum where a well-placed question mark could set the 

grounds for numerical sensemaking. Such question marks could be placed for example with respect 

https://www.geogebra.org/m/RCVce5W4


 

 

to implicit choices in the curriculum (e.g., learning difference-based asymptotic behavior), or with 

respect to deceivingly trivial implications (e.g., deriving the area under the graph of 𝑓(𝑥) = 𝑥2). In 

both cases we presented, SM teachers appeared reluctant at first, but eventually became highly 

engaged in the discussion, reflected on their practice, and proposed valuable insights based on their 

experience and expertise. Moreover, while teachers considered some parts of the discussions to be 

too demanding for most of their students, they were also parts teachers considered to be well within 

the grasp of SM students. For example, some teachers suggested that experimenting with Riemann 

sums of non-linear functions could deepen students’ understanding of the notion of area. Teachers 

also highlighted metalevel ideas that are of importance, for example that definitions in mathematics 

are not arbitrary, and that there could be different definitions of asymptotic behavior of functions that 

could be useful for different purposes. On the other side, the two cases we described are discouraging 

in suggesting that SM teachers do not engage students with approximation in calculus lessons and see 

little value in doing so as long as approximation is only a sidenote in the SM curriculum. Moreover, 

SM teachers themselves have little prior experience with numerical approximations, and thus likely 

lack knowledge needed for facilitating numerical sensemaking in their classes. Naturally, these 

observations are based on a small number of cases and a small number of teachers, and there is a need 

to further investigate them on larger scales and in additional contexts, for example it the context of a 

graduate numerical sensemaking course for practicing SM teachers that we are currently developing.  

We conclude by calling for additional collaborations between SM teachers, mathematicians, 

physicists, education researchers, and other stakeholders (e.g., secondary physics teachers) that could 

help promote calculus education that is better aligned with the diverse roles of calculus in society. 
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Abstract. We have recently developed a realization tree for the derivative with 17 roots based on its 

five main representations. In this paper, we discuss how this realization tree can be used for task 

design, particularly when the focus of teaching is helping students realize the applications of the 

derivative in the real world and learning more about the physical and numerical realizations of the 

derivative. To achieve this goal, we have designed a task in the context of chemistry. Here, we present 

the task and discuss how such a rich task addresses different realizations of the derivative.  

The derivative and its main five realizations 

The derivative is one of the core topics in calculus with applications in various disciplines (e.g., 

engineering and medicine) (Hass et al., 2018). Previous studies reported that many students struggle 

to learn the derivative due to the complexity of its definition and various representations (in the 

commognition term, realizations) (e.g., Biza, 2021). Five main different realizations have been 

discussed in the literature for the derivative: symbolic (the formal definition of the derivative, the 

limit of a difference quotient), graphical (the slope of the tangent line), numerical (
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
,  when 

∆𝑥 is very small but not let ∆𝑥 approaches zero as in the formal procedure), verbal (the instantaneous 

rate of change), and physical (the measuring procedure prior to calculating the derivative using 

numerical approaches). Furthermore, for each main realization, three layers of the derivative (i.e., 

ratio, limit, and function) map a function into its derivative (See Rounday et al., 2015; Zandieh, 2000). 

Past research pointed out many students struggle to make meaningful connections between these 

realizations (e.g., Biza, 2021; Zandieh, 2000). 

The realization tree: A tool from commognition theory 

In the commognition theory, mathematics is considered a type of discourse with unique objects and 

ways of doing and saying (Sfard, 2008). It is distinguishable from other discourses by its four 

interrelated characteristics: Word use (e.g., differentiable function), visual mediator (e.g., a derivative 

function drawn in Desmos), routines (e.g., how to find the absolute extrema of a continuous function 

on a finite closed interval), and endorsed narratives (e.g., the extreme value theorem) (Sfard, 2008). 

In the commognition theory, the term realization has been used instead of the well-known term 

representation. In addition, a visual mediator in the form of a connected graph has been introduced 

and named realization tree. It is defined as a “hierarchically organized set of all the realizations of 

the given signifier, together with the realizations of these realizations, as well as the realizations of 

these latter realizations, and so forth” (Sfard, 2008, p. 301). 
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A realization tree for the derivative 

We have developed a realization tree for the derivative at a point (See Haghjoo et al., 2023) based on 

the five main realizations that we pointed out above. We unpacked these five main realizations into 

17 roots: two roots for numerical (e.g., 𝑁1: 𝑓′(𝑥) ≈
𝑓(𝑥0+ℎ)−𝑓(𝑥0−ℎ)

2ℎ
), three roots for symbolic (e.g., 

𝑆3: 𝑓′(𝑥0) = lim
ℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
), ten roots for graphical, and one root for each verbal and physical 

realization. Furthermore, average and instantaneous rates of change have many applications in the 

real world. Consequently, we identified 26 verbal realizations across eight disciplines (e.g., chemistry 

and biology) for the derivative by exploring a few calculus textbooks (e.g., Hass et al., 2018), such 

as reaction rate in chemistry (V-5).   

The task: the reaction between calcium carbonate and hydrochloric acid 

Task designers, when focusing on the verbal realizations of the derivative, have many contexts to 

choose from. However, we recommend selecting a context relevant to students’ majors and future 

careers. Furthermore, we recommend selecting a context where measuring the dependent and 

independent variables is easy, not taking too much time, and, if possible, can be done by the lecturer 

or students in the lecture room. That makes the task very close to what is called in the literature as 

tasks with authentic context (Vos, 2020). Using such contextual tasks could make teaching more 

interesting for many students, especially those interested in learning mathematics because of its use-

value. Furthermore, it gives meaning to the mathematical concepts discussed in the task, could 

increase the task’s accessibility and may help students develop their mathematical understanding 

using their out-of-school/university knowledge (Vos, 2020).  

In this paper, we focus on the reaction rate in chemistry for calcium carbonate and hydrochloric acid 

because such an experiment could be done in the classroom/lecture by taking some safety measures, 

and the materials needed for doing this experiment are not expensive. The chemical equation for this 

experiment is CaCO3 (s)+ 2HCl (aq)→ CaCl2 (aq)+ CO2 (g)+ H2O(l). When hydrochloric acid (we 

used a 70% solution of hydrochloric acid) is added to calcium carbonate, calcium carbonate will 

dissolve. Furthermore, gas bubbles will appear at the top of the solution due to the formation of carbon 

dioxide gas. So, the lecturer or students could calculate the reaction rate by measuring the weight of 

the solution over some chosen intervals. Doing so shows how much carbon dioxide gas has been 

released through the solution. With the help of a digital scale and a timer, we recorded the weight of 

the solution and consequently, according to the law of conservation of mass, we were able to record 

how much carbon dioxide was released (Table 1). We measured the weight of the solution in six-

second intervals according to the sensitivity of the scale. The experiment ended after 36 seconds. The 

measuring process discussed above could help students to have a better realization of the P17 

(physical realization). It also provides the necessary information for students to engage with 

numerical realizations of the derivative. In chemistry, it is impossible to convert the mass of one 

element directly (for example, in grams) to the mass of another. Instead, mass-to-mole conversion 

should be used. This is also true for calculating the rate of change of reactions. One mole of carbon 

dioxide is approximately 44 grams (CO2: 12 + 2 × 16). Therefore, to calculate the average rate of the 

reaction, the measured mass in grams should be converted to mol first by dividing them by 44. 



 

 

T (second) 0 6 12 18 24 30 36 

Weight of solution (g) 16.07 15.83 15.69 15.60 15.55 15.51 15.47 

Weight of carbon dioxide (g) 0 0.24 0.38 0.47 0.52 0.56 0.60 

Weight of carbon dioxide (mol× 103) 0 5.5 8.6 10.7 11.8 12.7 13.6 

Table 1: The weight of solution and carbon dioxide in our experiment 

Afterwards, students can calculate the average rate of change in the six-second intervals by finding 

the corresponding difference quotients (e.g., R̅(CO2) =
5.5×10−3−0

6−0
= 0.92 × 10−3) (Table 2).  

Intervals 1st: 0-6 2nd: 6-12 3rd: 12-18 4th: 18-24 5th: 24-30 6th: 30-36 

R̅(CO2) (
𝑚𝑜𝑙

𝑆𝑒𝑐𝑜𝑛𝑑
) 0.92 × 10−3 0.52 × 10−3 0.35 × 10−3 0.18 × 10−3 0.15 × 10−3 0.15 × 10−3 

Table 2: The average rate of change of the reaction over six-second intervals 

The next step is to focus on approximating the instantaneous rate of change of the reaction. We chose 

to focus on 𝑡 = 18. We can use 𝑁1 and approximate the instantaneous rate of change of the reaction 

at 𝑡 = 18 using the average rate of change of the reaction in the third and fourth intervals (i.e., 

(0.35 × 10−3 + 0.18 × 10−3)/2 = 0.265 × 10−3). The next part could focus on the graphical 

realizations. We can start by putting the values of carbon dioxide we measured on an 𝑥 − 𝑦 plane on 

Desmos or other suitable platforms. Then ask students what would be a suitable function to fit these 

points. Students can manipulate themselves on the platform and try different types of functions. One 

of the elementary functions accessible to students and provides a reasonable approximation here is 

square root functions in the form of 𝑦 = 𝑎√𝑥  (See The reaction between calcium carbonate and 

hydrochloric acid (desmos.com); In this link, for convenience, the data on the 𝑦-axis is multiplied by 

104). Then, the lecturer can suggest a few functions used more often in chemistry that fit the obtained 

data from the reaction much better. Two examples are natural logarithms  and homographic functions. 

However, if students zoom in on the graph, they would realize that these functions are not the best fit 

for the obtained data. This could provide an opportunity for the lecturer to discuss with the students 

that in more advanced courses (e.g., introductory numerical analysis course), they would learn how 

to approximate functions based on a given set of points. Here in the Desmos link, we also included 

the Lagrange polynomial interpolation method. Then the lecturer could continue with a homographic 

or a natural logarithm function, as the polynomial obtained by the Lagrange method is complex for 

first-year calculus students (in our opinion).  

A reasonable fit for the obtained data from the reaction is 𝑦 = 53 ln(𝑡 + 3) − 57 ;   0 𝑡 36. Its 

graph could be used to discuss some of the graphical realizations of the derivative with the help of 

Desmos, such as Zooming in on the function to discuss 𝐺6 and drawing secant lines to discuss 𝐺7-

10. We can also discuss some of the symbolic realizations of the derivative with this function. For 

instance, the instantaneous rate of change could be estimated: 𝑅(CO2) = lim
Δt→0

Δn(Co2)

Δt
=

lim
Δt→0

𝑓(18+Δt)−𝑓(18)

Δt
=

53

t+3
. Substituting 𝑡 = 18 gives us another estimation for the derivative at this 

point which is 0.252 × 10−3 𝑚

𝑠
; that is close to our other estimation.   

https://www.desmos.com/calculator/pcchlroi6f
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Concluding words 

While our suggested task is related to chemistry, such design could be used for designing tasks in 

other contexts. To conclude, we suggest task designers start with the physical realization, which 

provides the necessary information for engaging students with the numerical realizations as suggested 

in the literature for teaching the derivative (e.g., Eaton et al., 2019; Roundy et al., 2015). Then, the 

graphical, symbolic, and verbal realizations could be the focus of teaching. In our search among 

several textbooks used for teaching calculus (e.g., Hass et al., 2018; Hughes-Hallett et al., 2017), the 

physical realization was not in focus when introducing the derivative. In Hughes-Hallett et al. (2017), 

the derivative is first introduced in a physical context (i.e., velocity) by focusing on the numerical 

realizations, whereas in Hass et al. (2018), it is first introduced by graphical and symbolic realizations. 

We hope this work also inspires textbook developers to consider the physical realization in calculus 

textbooks due to its importance, as highlighted in the literature: Mathematics could be taught “like 

the sciences as a laboratory discipline” (Eaton et al., 2019, p. 807). This could, among other things, 

help students feel “more agency to readily engage with the conversation on models and modeling” 

(Eaton et al., 2019, p. 807). 
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Math is scary. For life science students, maths is even scarier. Poor results in mathematics are 

amongst the main reasons for dropping out of STEM courses, particularly in life sciences — 

negative attitudes and disengagement being the main reasons for students’ failure. In the absence of 

exogenous instrumentality — e.g., a good grade in calculus as a prerequisite to enter medical school 

— we should strive to engage students with active learning that could at least pretend to carry 

intrinsic motivations (Husman & al., 2004). Or, in other words, we want students to work on tasks 

that appear to be relevant (to them!) in order to build a conceptual understanding of the 

mathematical objects at stake. 

The theoretical framework 

Mental Pictures 

A mathematical object does not exist in the real world, but only as a concept      in the mind of a 

person  , with      — the mental picture of   by   — consisting in a set of pictures that P 

associates to the name of C. 

The word ‘pictures’ here is used in the broadest sense of the word and it includes any visual 

representation of the concept (even symbols). Thus a graph of a specific function and the 

symbols  ‘      ’ might be included (together with many other things) in someone’s mental 

picture of the concept of function. (Vinner, 1983) 

Concept Image 

A person   could likely associate a set of properties (some of them correct, some of them incorrect) 

to each concept: e.g.,   might think that every odd function will be defined in 0, or she might think 

that any continuous function on       has a maximum. Vinner (1983) calls these properties held by 

  about   together with her mental pictures of   the concept image (of   by  ). 

The definition of the concept will be just one, if any, component of the concept image held by  . 

Unless one requires definitions for definitions sake — “Students need to know the definition of 

continuous function in order to pass my course!”
1
 — concept definitions are useful at best to help to 

generate concept images. Usually “concept definitions will remain inactive or even will be 

forgotten[;] in thinking, almost always the concept image will be evoked” (ibidem). “The formal 

definition [of a mathematical concept] should be only a conclusion of the various examples 

introduced to the students” (Vinner & Dreyfus, 1989).  

                                                 

1
 Emphasis on ‘know:’ ‘understanding’ is not really required. 
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The context 

I have been teaching Istituzioni di matematiche to Natural Sciences students at the University of 

Milan since 2015. Students are on average quite weak, with many of them not reaching the minimal 

level of competence in mathematics required by the degree programme. The course has been taught 

using the flipped classroom since 2021, with classroom time spent working on problems (Rizzo, 

2022). 

Almost all students graduated from an Italian high school, hence we know that they have been 

exposed to some calculus (at least up to derivatives) and have spent a significant amount of time 

learning to sketch a qualitative graph of functions. 

Limits of real functions 

Following Vinner’s theoretical framework, I presented the concept of               in the 

following way: “As time goes by, the measure of      gets undistinguishable from  : if you get 

hold of better instruments, it will take some more time, but eventually it will get again 

undistinguishable.” The formal definition is then presented as a mathematization of this image, 

mainly in the hope that those that learned it by heart in school will now try to make some sense out 

of it. 

Functions will always converge monotonically 

I asked students the following questions (translated into English for the reader’s sake)  

 Ovotransferrin — which makes up 12% of egg proteins — denatures at 62º C. We repeat 

an experiment with initial temperature        and               

1: If      and     , what happens?  

2: If      and     , what happens? 

3: If      and     , what happens? 

Students answered anonymously, using instant polling software on their phones, working in small 

groups or occasionally on their own. Given the classroom configuration it would have been 

impractical to form random groups, so they were self-selected. In Table 1 we present cumulative 

answers from the classes of 2021 and 2022: in total 80 students took part to the questions, divided 

into 41 groups.   

Question 1 Question 2 Question 3

Boiled eggs 66%

It stays boiled (but 

it cools down) 61%

Proteins might have 

denatured 10%

Denatured proteins 7% A cold egg 5% Nothing 54%

Non sensical 5% Non sensical 5% Non sensical 2%

No answer 22% No answer 29% No answer 34%  

Table 1: Categorisation of students' answers 

As it could be expected, questions 1 and 2 were quite easy, at least for those students that could 

make sense of the question. It could be interesting to notice that only 7% of students were not able 

to make the step from the denaturation of proteins to the albumen becoming solid. Some missing 



 

 

answer can be explained by students joining the poll individually but answering collectively; given 

that anonymity is part of the activity design, I have no way to distinguish such a case from students 

giving up to peruse social networks. 

Some of the answers to question 1 point to monotonical convergence to the limit 70º C, since they 

are quite clearly referring to Newton’s law of cooling, which I presented as the first example of 

limit for      (all answers are translated by the author): 

For certain, it is not at 70º C since physics is not a matter of opinion. 

The egg proteins degrade and have a temperature close to but not equal to 70º C. 

What is interesting is analysing answers to question 3: only three groups (and only in the class of 

2022) were able to postulate that the temperature function might have exceeded 62º C, and not 

necessarily so in a mathematical correct sentence: 

The egg might have denatured if during the function the temperature passed 62 degrees, 

otherwise it stays as it was. 

The protein might have denatured if in the interval between 40 and 60 degrees the temperature 

went over 62 degrees. 

Ovotransferrin could have started to denature. 

Notice that the last sentence could also be interpreted as pointing to a different interpretation: 

denaturation is actually not an on/off reaction, but a statistical one. Indeed, another answer was: 

So, some proteins denature, many others don’t. 

Most answers claim that nothing happens to the egg, or that it just gets warmed up. Given the 

answers to the first two questions, we can assume that most students mean that the temperature 

never passes 62º C. Some answers, though, affirm more explicitly that the   increases 

monotonically: 

The   to which it tends is not sufficient to denature proteins. 

The internal temperature changes but the protein will not denature. 

The protein will not denature. The egg warms up with no chemical reaction. We do not know 

what happens to other proteins. 

Finally, some answers show that the concept of infinity as a mathematical object that stands for 

“given enough time” is clear: 

Proteins will not denature so the egg doesn’t become hard, but it will rot if left for too long. 

This shows that, unless we are given a data point (for example, from the computation of stationary 

points) that says otherwise, most student will associate the (incorrect) mental image of monotonicity 

to the concept of convergence at   . 

In a neighbourhood of infinity 

In the following lecture, where actual computation techniques were shown, I asked students: 

Suppose that the thickness of the subcutaneous layer of fat in a brooding penguin is given, in 

centimetres, by the function                       ; which meaning 

can we give to the limit of      as     ?  



 

 

The 2021 and 2022 classes behaved quite differently: the former formed 9 groups out of 38 

students, the latter 22 groups out of 49 students. We see in Table 2 students’ answers by year. 

I do not know if the larger groups of the 2021 class allowed a much greater percentage of students 

to get the answer. Yet, we see that a significant number of students read the question as if it asked to 

compute the limit, showing a concept image of limits as the result of a computation.  

2021 2022

The penguin died 44% 9%

The limit is 0 / the penguin gets thinner 22% 73%

It helps to understand what happens with time 33% 0%

There is no meaning 11% 0%

Non sensical 0% 18%  

Table 2: Categorisation of students' answers 

Conclusions 

We can recognise three different images of the concept         : a computation, the value at 

infinity and an approximate value given enough time. As expected, no student made explicit 

reference to the concept definition, although many of them most likely had learned it by heart the 

previous year in high school. In the ovotrasferrin case, where no computation was possible, most 

students were able to semiotically convert the mathematical meaning to the “in the model” 

meaning; in the penguin case this occurs to a much lesser extent: we could attribute this to the 

attraction of the “computation” image. If the learning of calculus has no exogenous instrumentality 

and has to be justified to life science students with intrinsic motivations, these could only be in 

relevant mathematical models. Hence, I believe in the importance of bringing the “approximate 

value given enough time” image to the forefront. Moreover, computational ability should not be 

overemphasised, but we should rather encourage critical thinking on what one could infer from the 

mathematical data. 
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Introduction 

Past research in the mathematics education community has documented students’ challenges with 

rate-related ideas – including differentiation and covariational reasoning (Rasmussen et al., 2014; 

Thompson & Carlson, 2017) – suggesting the need for more support to help students reason about 

rate of change in discipline-specific contexts (e.g., chemistry). In this report, I draw on three 

qualitative research studies I conducted in collaboration with colleagues that involved analyzing 

responses from interviews with undergraduate general chemistry students (Rodriguez et al. 2020a, 

2020b, 2020c). During the interviews students were asked to interpret and draw graphs commonly 

encountered in chemistry. The goal of this paper is to synthesize themes, with an emphasis on 

implications for mathematics instruction and research on undergraduate mathematics education. 

Collectively, this work focuses on how students elicit information about rate from graphical 

representations in chemistry, with the data demonstrating similarity in reasoning across the students 

and across representation types (rate vs. time graph, reaction coordinate diagram, distribution 

graph).  

Theoretical perspectives 

With respect to assumptions about the nature and structure of knowledge, the collection of studies 

discussed in this paper were informed by a fine-grained constructivist perspective (diSessa, 1993; 

Elby, 2000). This cognitive model emphasizes the context-dependence of knowledge in which an 

emergent network of knowledge elements or resources are activated in response to features in a 

prompt (as opposed to knowledge being stable and unitary across contexts). Although this cognitive 

model has its roots in physics education research, it has been applied to a variety of disciplinary 

contexts, such as mathematics, biology, and chemistry. This is important because it is not just the 

shared content (e.g., energy) and skills (e.g., graphical reasoning) that connect our fields, it is the 

epistemological assumptions. Shared assumptions about the nature of knowledge (i.e., theories, 

frameworks, models) connect our education communities, with broad use of a framework 

demonstrating its utility and power in making predictions and developing explanations about how 

students learn and how we can better support students.   

Methods 

This paper draws themes from three studies. Only a brief methodological overview is provided; for 

more information about the details of these studies, see the cited papers. Each of the published 

studies involved first-year general chemistry students sampled from a university in the Midwestern 

United States, with the students interpreting and constructing graphical representations in an 



 

 

interview context. The representations discussed are a rate vs. time graph (Rodriguez et al., 2020a), 

a reaction coordinate diagram (Rodriguez et al., 2020b), and a distribution graph (Rodriguez et al., 

2020c). Analysis involved a combination of deductive and inductive coding to generate themes, 

with much of the analysis emphasizing the fine-grained intuitive ideas students associated with 

patterns in graphs.    

Findings 

Students are provided a variety of graphical representations in introductory chemistry that may look 

similar but are intended to be read differently. Across datasets (examples provided in Figure 1), 

students demonstrated similar reasoning when interpreting the graphical representations: reaction 

rate vs. time graph, reaction coordinate diagram, and distribution graph (number of molecules vs. 

speed). The students expressed a preference for eliciting trends from the graphs by focusing on a 

specific graphical pattern; student reasoning emphasized the idea that relative steepness provides 

information about rate (steepness as rate).  

 

Jacob: “… as the speed increases

originally, the number of molecules
increases for a short period of time. Then

it reaches a point where it begins to

decrease and then eventually, it goes all
the way down in the speed or all the way

down until there's no more molecules … I
guess it'd be a sharper increase, because

of the increase in speed would increase

the number of molecules and then this
curvy tail part would be like it

dropping off on like a slower, more
constant rate.”

Interviewer: “What makes you focus

on the slope?”
Beth: “Just because I relate slope

to basically speed and just a

steeper slope means that it ’s
proceeding quicker.”

Interviewer: “How do you know
that? Was that something from the

course, or?”

Beth: “I think it's just something
like I've picked up from classes … I

guess, I don't know.”
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react ion coordinate diagram

Jenna: “Maybe something like that

where its fast init ially and then grows
steadier over time … I think that's why

it would start out fast and then slow
down.”

 

Figure 1: Students’ reasoning across graphical representations 

For example, Beth was prompted to describe a reaction coordinate diagram that she drew (Figure 1, 

left). In introductory chemistry courses, we focus on comparing the relative height of the peaks and 

valleys (potential energy) in the reaction coordinate diagram and the “x-axis” is effectively ignored. 

As the name suggests, it is better conceptualized as a one-dimensional diagram, not a graph.  

Despite the misleading surface features that suggest this is a “graph”, focusing on the slope to draw 

conclusions about rate does not work in this context. Likewise, in Jacob’s case (Figure 1, right), 

focusing on the relative steepness for a distribution graph will not provide information about the 

rate of a reaction because it is intended to be interpreted more like a histogram that describes 

variation in states. Moreover, although rate can be viewed as a general ratio between quantities, 

implicit in Beth’s discussion – and explicit in Jacob’s discussion – is an association between rate 



 

 

and time with an unproductive mapping of time onto the x-axis as they discussed rate. In Jacob’s 

case, his interpretation focused on reading the graph as a process that unfolds over time where the 

peak is an event, as opposed to viewing the peak as a measure of central tendency. Lastly, in 

contrast to Beth and Jacob, Jenna was prompted to interpret a graph she drew that involved time on 

the x-axis (Figure 1, center). For her description, Jenna emphasized a rate that is initially high but 

slows down, which she modeled using a steep slope followed by a curve that levels off. Based on 

her discussion and drawing, Jenna, like Beth and Jacob, was focusing on steepness as rate. 

Nevertheless, the graph involves rate modeled as a function of time; this means that eliciting trends 

about reaction rate is based on the values on the y-axis, as opposed to a ratio between y and x. 

Importantly, across the examples provided, the graphs reflect a context where steepness as rate does 

not “work”.  

Conclusion and Implications 

Importantly, the common thread among the students was the use of the intuitive idea steepness as 

rate. Although space constraints limit their discussion here, across multiple qualitative studies 

involving students from three universities in the U.S. and one university in Sweden, I have noticed 

the strong phenomenological basis of intuitive graphical resources, especially steepness as rate. 

Within the resource-based perspective of knowledge, I argue that steepness as rate has a 

particularly high association with graphs for students, in which it is consistently activated in the 

context of graph-based prompts. Moreover, as discussed in the resources perspective, it is important 

to acknowledge the utility of the ideas that students have at their disposal. Focusing on relative 

steepness is a productive idea that works for most contexts (e.g., the rate of chemical reaction can 

be determined using the slope of a concentration vs. time graph); however, the problem is when 

students over-generalize this idea to other representation types. Thus, students need more support 

utilizes resources more productively. 

As an implication, mathematics education and research can focus on scaffolding and guiding 

students to leverage the ideas they have (i.e., recognizing when steepness elicits the relevant 

information). In the examples provided, students seemed to be ignoring the axes and focusing on 

the graphical pattern. This is a trend I also observed in a biochemistry context that was further 

complicated because of disciplinary-specific language (e.g., biochemistry graphs involve the 

convention of using velocity on the y-axis instead of reaction rate) (Rodriguez & Towns, 2021). 

Part of the problem are the challenges related to covariational reasoning, which involves “holding in 

mind a sustained image of two quantities’ values (magnitudes) simultaneously” (Saldanha & 

Thompson, 1998, p.299). That said, students would benefit from prompting that emphasizes first 

focusing on the axes and the information it communicates. This aligns with the mental actions and 

behaviors that are necessary first steps toward covariational reasoning (Carlson et al., 2002). Lastly, 

it is also important that coursework provides a variety of examples, particularly opportunities to 

reason about rate in non-time contexts (Jones, 2017) and in scenarios where rate can be 

conceptualized as both a value and a ratio. 
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Interdisciplinary mathematics education  

For many decades, “biology education is burdened by habits from a past where biology was seen as 

a safe harbor for math-averse science students” (Steen, 2005, p. 14). This statement reflects a 

cultural gap between biologists and mathematicians briefly summarised as “what attracts students to 

mathematics, physics, and engineering tends to repel students who are interested in biology” (Chiel 

et al., 2010, p. 250). Nowadays, “mathematics enters at every stage of science: in designing an 

experiment, seeking response patterns, and in the search for underlying mechanisms” (Karsai & 

Kampis, 2010, p. 632). Research collaboration ties between mathematicians and biologists have 

been getting stronger during the last decades benefiting the advancement of both disciplines. 

Recognising the need to support the productive collaboration between mathematics and biology, 

high-profile reports (AAAS, 2011; National Research Council, 2009) called for a reform of biology 

education and a wider incorporation of quantitative concepts and skills into the biology curriculum. 

Mathematics education of future biologists classifies as interdisciplinary where “closely linked 

concepts and skills are learned from two or more disciplines with the aim of deepening knowledge 

and skills” (Leung, 2020, p. 1), but it is not sufficient to introduce more mathematics courses for its 

improvement. Karsai and Kampis (2010) emphasized that “for mathematics to make sense in 

biology education, science should make first” (p. 633), and “the strongest effect of math on biology 

education will be the extensive use of models and simulations” (p. 636). Borromeo Ferri and 

Mousoulides (2018) suggested that mathematical modelling can serve as a prototype of 

interdisciplinary mathematics education. They stressed the importance of starting with a real-life 

problem and questions from another scientific discipline (p. 901) and warned that “not every 

interdisciplinary task, which has (some) mathematics in it, is a modelling problem per se” (p. 906). 

Students should work with a real modelling problem in which they understand the context and all 

disciplines involved and use their extra-mathematical knowledge (p. 906). 

Communities of practice, boundary crossing, and brokering 

Akkerman and Bakker (2011) argued that boundaries are markers of “sociocultural difference 

leading to discontinuity in action or interaction” (p. 133). Due to their dynamic nature, the 

boundaries between disciplinary communities can also carry potential for learning. Wenger (1998) 

introduced the construct of communities of practice (CoP) posing that learning involves 

participating “in the practices of social communities and constructing identities in relation to those 

communities” (p. 4, emphasis in original). Different academic disciplines (in our case, mathematics 

and biology) would claim membership of distinct CoP with distinct domains of knowledge and 

culture but with related professional practices. According to Wenger (1998), potential connections 
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between CoP may take the form of boundary encounters where participants try to understand how 

other practices negotiate meaning, “an ongoing forum for mutual engagement” (p. 114). 

Interdisciplinary education can be significantly hindered by cultural differences grounded in 

epistemological differences between disciplines which might constitute a considerable challenge. 

Mediation between disciplines is especially important, and this role is taken by brokers who work at 

the boundaries between disciplines. Wenger (1998) emphasized the complexity of brokering which 

requires the ability to “cause learning by introducing into a practice elements of another” (p. 109). 

At the same time, brokers can feel like they belong to one world, to both worlds, but also to none 

(Akkerman & Bakker, 2011).  

The research questions we discuss in this paper are: (1) How do epistemological differences 

between biology and mathematics CoP hinder students’ work on a modelling task? (2) How can 

brokering at the boundary between the two CoP facilitate students’ learning? 

Modelling task 

We analysed students’ work on an open-ended task offered to a group of twelve undergraduate 

biology students (9 female and 3 male) at a Norwegian university. All students were concurrently 

enrolled in a compulsory first-semester mathematics course and did not have previous modelling 

experience. This task is one of many suggested to students during five three-hour extra-curricular 

modelling sessions whose main goal was to show students how simple mathematical tools can be 

used to solve meaningful biological tasks thus increasing students’ motivation to learn more 

mathematics. The task “Rabbits on the Road” was selected from a popular book on ecological 

modelling written by a renowned ecology professor who also suggested problem’s solution which 

was adopted by the second author for the discussion in the class (Harte, 1988, pp. 211-213). Two 

small groups of students worked on the problem for forty minutes. Their work was recorded, 

transcribed, and analysed. During the analysis of students’ discussions, substantial distinctions 

between the views on the concept of population density between biologists and mathematicians 

came into focus which, in turn, pointed towards differences in the views of two CoP on modelling. 

Problem A. Driving across Nevada, you count 97 dead but still easily recognizable jackrabbits 

on a 200-km stretch of Highway 50. Along the same stretch of highway, 28 vehicles passed you 

going the opposite way. What is the approximate density of the rabbit population to which the 

killed ones belonged? 

More details about the choice of problems and organization of students’ work can be found in 

Rogovchenko (2021); for commognitive analysis of tensions between ritualized and exploratory 

discourses in students’ work on Problem A, we refer to Viirman and Nardi (2019).  

Multiple faces of population density 

The modelling task turned out to be challenging for students. An explanation for this comes from 

the definition of population density in McArdle (2001) according to which mathematicians learn the 

following. First, population density is often used in biology as a measure of organisms’ response to 

local conditions which is new and nonessential to mathematicians but attracts students’ attention to 

details not needed for solution. Second, density can be used as “an explicit proxy for population 



 

 

 

size” and “the link between population density and population size is not always direct” (McArdle, 

2001). This is why students were unsure how to use the data collected along a highway. Third, if the 

area includes the entire population (say, an island), the density times area gives the total population 

size, otherwise “density simply gives the number of organisms present in some defined study area” 

(McArdle, 2001). Although the problem comes from a book written by the ecology professor 

(Harte, 1988), these issues were not taken into consideration, and a mathematics professor did not 

reflect about them either while choosing the task for the first session with the students. 

Population density for mathematicians means the number of individuals divided by the area they 

inhabit. Mathematicians perform this calculation with ease and would have also used the same 

definition in Problem A. Further mathematical complications with the concept of density are based 

on an implicit assumption of homogeneous mixing, not acceptable for most biologists. One can find 

the total population introducing a radial density function ρ(r) and using a definite integral 

(Rogawski & Adams, 2018, p. 385) and even by employing a multivariable density function ρ(x,y)  

and calculating a double integral (Buono, pp. 198-199). 

Different views of two communities on models and modelling 

There are important epistemological distinctions between the views of mathematics and biology 

CoP on mathematical models and modelling that influence their approaches to modeling tasks. 

First, biologists are usually trained to choose exactly that model from those available which fits 

experimental data the best. They lack experience in modifying existing models or creating new 

ones. Second, biologists tend to adopt a holistic approach to biological systems and experience 

difficulties when they have to decide what aspects of a biological system should be excluded and 

what assumptions should be imposed. Third, “in the science education literature modelling tasks 

often emphasize the need for students to fit real systems or match some existing target model,” and 

if this is the only purpose, “important aspects of productive scientific thought will be neglected” 

(Svoboda & Passmore, 2011, p. 16). Fourth, complexity of biological systems requires developing 

the feeling of the entire organism which may not be easily quantified (Chiel et al., 2010, p. 249). 

Discussion and conclusions 

Biology undergraduates experienced difficulties with a modeling task induced by their professional 

training as biologists and not known to mathematicians, a situation where views of two CoP on the 

same concept differed significantly. We argue that the attention of mathematicians to biological 

details and active brokering can facilitate students’ learning of mathematics. Boundary practices can 

become a “longer-term way of connecting communities in order to coordinate perspectives and 

resolve problems” (Goos & Bennison, 2018, p. 259). 
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Mathematics and engineering: Interplay between praxeologies 

Frode Rønning  
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Introduction  

There are several on-going initiatives aiming at strengthening the connection between mathematics 

and applications in engineering, both within the study programmes and between the study 

programmes and work life. The CDIO (Conceive, Design, Implement, Operate 

http://www.cdio.org) approach has formulated some general principles for engineering education, 

such as the principle of contextual learning: “Concepts … are presented in the context of their use”, 

and “[e]xamples include believable situations that students recognize as being important to their 

current or possible future lives” (Crawley et al., 2014, pp. 32-33). In the CDIO approach, a deep 

working knowledge and conceptual understanding are emphasised (Crawley et al., 2014, p. 13). 

This may be interpreted in the way that to use mathematics in engineering contexts requires 

understanding of mathematics at the level of studied reflection; “[t]o be able to use mathematics to 

solve problems” and “[t]o understand how mathematics applies to other situations” (Booth, 2004, p. 

25).  The idea of contextual learning can also be seen as one possible answer to challenges with 

mathematics in engineering education connected to students not seeing the relevance of the 

mathematics they are expected to learn (González-Martín, 2021). Findings show that students find it 

challenging to apply mathematics they have learnt when they need it in engineering courses 

(Carvalho & Oliviera, 2018).  

This paper is based on a collaborative project between mathematics and electrical engineering. The 

participating students are in their first year of the Master of Technology (MT) programme 

Electronic Systems Design and Innovation. I will present an example from the project showing that 

engineering problems may require (rather advanced) mathematical knowledge to be solved. 

However, also deep knowledge from the engineering field is necessary to model the problem in 

mathematical terms. Following the Anthropological Theory of the Didactic (ATD), I see 

mathematics and engineering as two institutions, each with their own praxeology,  M (mathematics) 

and  E (engineering). The analysis of the example shows that to answer the generating question, 

arising in  E, essential elements from both  M and  E are required. I will write  i = [Pi/Li] = [Ti,  i, 

 i,  i], i = E or M, according to standard notation in ATD (Bosch & Gascón, 2014). The interplay 

between praxeologies in the same project is further elaborated in Rønning (2022). Other authors 

have also discussed interplay between praxeologies. To this end, Peters et al. (2017) introduce what 

they call an extended praxeological ATD-model, and González-Martín (2021) discusses the use of 

integrals in engineering. He also links this to the issue of relevance of mathematics for engineering.  

To investigate whether the context-based teaching affects the students’ perceived relevance of 

mathematics, a survey was distributed in the spring of 2022 both to the students within the project 

and to all other first-year MT students. Some results are shown at the end of the paper. 
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The example 

The fundamental example is the oscillator circuit shown in Figure 1, and the generating question Q 

is to determine the output voltage y. This circuit is an extension of the simpler circuit shown in 

Figure 2 which contains an amplifier, described by the linear relation z = Gy, where G is a positive 

number and y is the voltage. The circuit in Figure 1 was used as an example both in the mathematics 

course and in an electronics course running in parallel. In the electronics course, the students built 

the circuit from physical components, and they could observe its behaviour. To answer Q, the 

students can do measurements ( E) but to explain why the output behaves as it does, mathematical 

concepts and techniques ( M) are necessary. Furthermore, to explain why the mathematical 

techniques work, a mathematical technology ( M) is required. This can be seen as an interplay 

between the praxeologies  M and  E where the mathematical understanding is lifted to the level of 

studied reflection (Booth, 2004). I will now discuss the two circuits more in detail to see how the 

praxeologies interact. The circuit in Figure 2 can be modelled with the differential equation (1) 

(Lundheim, 2021). 

(1)          
 

 
   

 

  
     

This differential equation can be solved using analytic methods, and the solution can be written 

                            , 

where             and           . Modelling the circuit requires knowledge from  E, 

and solving the differential equation (1) requires knowledge from  M. It follows that when G = 1, 

harmonic oscillations are obtained. When G < 1 (    ,         , the oscillations will die out. 

When G > 1 (    ,         , the system will be unstable.  

                            

Figure 1. The oscillator    Figure 2. A simple circuit 

From an engineering point of view, stable oscillations that do not die out are desirable, so one 

would like to set the constant G in the amplifier equal to 1. In  M one could say “assume G = 1”, 

and then proceed. However, the engineer knows ( E) that keeping the number G exactly equal to 1, 

is impossible in practice, so it is necessary to modify the circuit by introducing new elements in it, 

which is how the circuit in Figure 1 is created. Without going into details, I will only say that this 

modification results in a non-linear model. This modification requires knowledge both from the 

praxis block and the logos block of  E. Mathematically, the modification means that the linear 

function z = Gy is replaced with z = g(y). The equation (1) then turns into 



 

 

                   
 

 
   

 

  
     

The inverse of the function   can be explicitly written as  

                 
 

  
  

 

  
   

This follows from properties of the elements of the circuit (Lundheim, 2021). The constants in the 

expressions come from the specifications of the components in the circuit. To formulate the 

equation (2) and the expression for     knowledge both from  E and  M is necessary. As a result of 

the modification, the mathematical problem has changed to the non-linear differential equation (2) 

instead of the linear equation (1). This challenges both the praxis block and the logos block of  M: 

Does the equation have a solution (LM) and if so, how can it be solved (PM)? The equation (2) is a 

special case of Lienard’s equation, and Lienard’s theorem gives conditions, which are part of LM, 

for this equation to have a stable limit cycle (see e.g., Lins et al., 1977, pp. 335-336). To solve (2), it 

is necessary to use numerical methods, and to this end, the equation must be rewritten into a system 

of first order equations, which can be solved (PM) using e.g., the symplectic Euler method (Hairer & 

Wanner, 2015). Note that since an explicit expression for     is known, one can find an expression 

for    by differentiating     without having an expression for   itself, using the Chain Rule (LM).  

Discussion 

Traditionally, students in their first year will encounter only analytic methods for solving second 

order differential equations with constant coefficients, like equation (1). Numerical methods are 

usually at this stage restricted to simple methods (e.g., Euler’s method) for solving the first order 

initial value problem                  . Solving systems is also at this stage usually 

restricted to linear systems. Seen from a mathematical point of view, these choices are natural since 

they give simple, elegant solutions and they show how various parts of mathematics are useful, such 

as complex numbers, or eigenvalues and eigenvectors of matrices. However, from an engineering 

point of view, these methods have limited value since they can only be applied to situations which 

are not so often found in real engineering applications, or in engineering courses, as the example 

with the oscillator in Figure 1 shows. The possible discrepancy between the classical methods ( M) 

from  M and the relevant applications (TE) in  E raises the question of relevance of mathematics for 

engineering. The table below shows answers to two of the statements presented in the survey. The 

percentages in boldface show the results from the students within the project (n = 45) and those in 

normal font in parenthesis show the results from the rest of the students (n = 494).  

 Completely 

agree 

Partly agree Partly 

disagree 

Completely 

disagree 

In my work with other courses (i.e., not 

mathematics courses), I have seen the 

importance of learning mathematics. 

85 % (37 

%) 

13 % (44 

%) 

0 % (14 %) 0 % (5 %) 

I don’t think the mathematics I have learned is 

very relevant for my study programme. 

2 % (5 %) 2 % (25 %) 18 % (44 

%) 

78 % (26 

%) 



 

 

These results indicate that working with mathematics in context may increase the perceived 

relevance of mathematics. Currently, more programmes have been included in the project, and by 

repeating the survey, one may see whether the responses from the newly included programmes have 

changed. 
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Introduction 

Mathematics has an inevitable role in economics, reflected both in education and in the workplace 

of economist. Mathematics courses for economics students usually offer contents including 

fundamentals of calculus and linear algebra, but also advanced mathematics theories for various 

economic purposes (e.g., Ariza, Llinares & Valls, 2015; Feudel & Biehler, 2021; Żylicz, 2006). 

They can be further shaped by the extensive use of technology which reduces demands on the 

ability to perform (lengthy) procedures and requires a deeper understanding of concepts. Despite all 

the above, as reported in mathematics education areas for non-specialists, “invisibility of 

mathematics”, especially in the workplace, leads “to question the prominence of mathematics in 

[…] education” (González-Martín, Gueudet, Barquero, & Romo-Vázquez, 2021). While there are a 

number of research papers that attempt to understand fundamental economics concepts developed 

on the mathematical concept of derivative (e.g., Ariza et al., 2015; Feudel & Biehler 2021; 

Landgärds, 2018), research papers on integral calculus seem to be less present. The present study 

attempts to tackle this problem by posing a question from the field of financial literacy where the 

required answer basically draws on the integral (or summation). In mathematics, the content of 

integral has two main organizations: it appears as the “antiderivative” (in definition of the indefinite 

integral, with the techniques how to determine it), and as “indefinite sums” (Riemann sums, in 

definition of the definite integral, with the interpretation as an “area under the graph”), which are 

(magnificently) related to by the Fundamental Theorem of Calculus. The latter organization further 

induces the aspect of integral as the “total amount of a changing quantity” in various contexts of 

application. Thus, in the context of civil engineering, González-Martín and Hernandes-Gomes 

(2018) reported that the professional “textbook’s tasks do not require students to use techniques 

typically introduced in a traditional calculus course”, which is also the starting point of this study. 

Motivation, research question and theoretical framework 

In winter semester of the academic year 2022/2023 the authors conducted workshops for graduate 

students of mathematics and mathematics education on financial literacy with the goal to enhance 

their understanding of underlying mathematics to successfully cope with the challenges of teaching 

these topics in school, but also to enhance their financial literacy. One of the topics covered was 

“Annuity vs. installment”. Resources presented in Figure 1, were found on the website of a financial 

portal (Moj bankar, 2022), where it is also stated that by repaying the loan in installments, the total 

amount repaid is lower than in annuities. Students were asked to justify the claim written in the text 

using the given graph. Our motivation for this study comes from these discussions, where students 

generally did not justify the total amount repaid with summations or integrals. Students who argued 

mathematically mostly based their answers on the position of the intersection of the two lines: 

“before half of the repayment time, the installment becomes lower than the annuity”, “most of the 

blue graph is below the red one”. Others did not find the graph informative enough: “this text would 
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not help me too much, because it is too concise”, “calculation is missing”, “it depends on how a 

person wants to organize his life”. The discussion with these students triggered us to explore the 

potential that the task could offer in teaching economics students. Therefore, our question is: What 

role could this task have in the teaching of integrals, as seen by the mathematics teacher and the 

economics teacher? What other mathematics concepts or ideas teachers refer to in their analysis?  

When repaying the loan in installments, the 

monthly repayments are not equal, namely, 

each installment repays the same principal 

amount, but in absolute terms the amount of 

interest is higher in the initial period. Since 

the principal amount is the same every 

month in installment payments, and the 

amount of interest varies, the initial 

installments are slightly higher. 

Loan example: 100,000 euros, 10 years, interest rate 5% 

Annuity, interest repayment 27,267, principal repayment 100,000, total repayment 127,267. 

Installments, interest repayment 25,208, principal repayment 100,000, total repayment 125,208. 

Figure 1: Monthly loan repayment in annuities and installments 

This study draws on the Anthropological Theory of the Didactic (ATD) as a theoretical framework 

since it pays special attention to the institutional construction of knowledge (Chevallard, 1991). We 

observe two different institutions – institution of mathematical courses and institution of economics 

courses targeting the workplace of economist, and the circulation of praxeologies between them. 

Analysis of praxeologies, as a set of a theory (logos) and practical work (praxis) that shape certain 

knowledge, and are developed by both institutions separately, brings a powerful insight into their 

practices. The first step is the analysis of a certain punctual praxeology, which is organized around 

the type of tasks within a piece of knowledge, followed by the technique to carry them out (as part 

of the praxis block) and technology with underlying theory that describe and justify the technique 

(as part of the logos block) is to be initiated with this study.   

Context of the study  

For our purpose we interviewed two teachers from a faculty of economy to gain insight into 

practices of institutions: a mathematics teacher, an assistant professor, with 20 years of experience 

in teaching introductory mathematics to economics students, and an economics teacher, a full 

professor, who teaches Principal of economics, Microeconomics and other specialized subjects for 

graduate and postgraduate students for more than 15 years. They participated in separate interviews 

conducted by the second author, which lasted about half an hour. 

After they were shown a graph from the website of a financial portal, the interviewer asked the 

following questions: Is this graph important to be understood or produced by a future economist, 

e.g., a person working with clients in a bank? What method of justification would you like or expect 



 

 

your students to use? In what way would you like the teaching of mathematics to contribute to this? 

Do you use or would you like to use such a graph in teaching mathematics? Would you present the 

given problem graphically in a different way? Do you handle this problem with the accompanying 

mathematics by means of formulas? Do you comment in this problem, for example, on the "total 

amount repaid"?  In general, to what extent and how economic concepts are used in mathematics 

lessons? Which concept are discussed? What is the prior knowledge of your students for 

introductory mathematics classes and how do you adapt? 

Results and discussion 

As found in the interview with a mathematics teacher, introductory mathematics course is offered in 

the first term only, which is a significant reduction compared to the previous program carried out at 

that faculty. It comprises mathematical content of single variable calculus and linear algebra. 

Regarding the loan repayment, students are required to produce repayment tables consisting of 

monthly payments of principal sum and interest, and total amount repaid, by using formulas for 

prenumerando and postnumerando payment. This topic does not appear again among economic 

topics that are introduced in calculus (e.g., marginal cost, total cost, demand function, elasticity of 

demand). When working with the concept of integral, the teacher argues that he cannot rely on the 

students’ prior knowledge, as most of them did not learn it in school. According to syllabus, the 

integral is primarily seen as the antiderivative, with the techniques for its determination (method of 

substitution, partial integration), so “this particular example would certainly fit in well”. He finds 

that the given graph lacks a certain mathematical precision since discrete data are shown as 

continuous. Further he argues that it is very enriching to perform a dimensional analysis of involved 

variables - in this task it would indicate some lack of descriptions of variables. He does that with 

graduate students, however, due to lack of sound mathematical pre-knowledge it is “out of reach” of 

undergraduate students and “out of time” for him as a teacher.        

Upon inspecting a graph, the economics teacher comments that it gives just a vague idea of the total 

amounts repaid in these cases.  For him, the issue of a consumer’s choice is not related exclusively 

to the total amount repaid, but to his life context, that is, “at which point in life he is”. Besides, he 

stresses that it is very important to consider inflation and discounted values of all amounts. In this 

situation in the workplace, he considers the use of graphs to be less important and points out that 

what is important is what mathematics can accurately provide, namely the exact amounts and 

payment tables. Still, “this [graph] is relatively OK. For an ordinary person, this can bring him 

closer to the idea.” Even “those graphs make sense in introductory education… Things in the first 

year of mathematics courses are crucial for a person to take them further, the rest are upgrades”. 

The economics teacher argues a great deal on the use of different representations: “In economics, 

we say that there are three languages: verbal, mathematical and graphic. Today students work very 

little in mathematical language, and they are very weak in it. So, we do some things at the graph 

level”.  

Both teachers discussed this seemingly underspecified task from the perspective of their discipline 

and found that the required answer of the task can be better understood by doing calculations than 



 

 

from the graph. “Mathematics is required to bring precision.” Interestingly, idea of the integral was 

not much discussed by none of the teachers, supposedly due to the curriculum restrictions.  

In mathematics education for non-specialists it is always a challenge to meet the other discipline in 

a non-trivial way. This example aims at a better understanding of (a fragment of) the mathematics 

that appears in the workplace of economists as their possibly relevant knowledge. In terms of 

praxeologies, a possible technique for solving this task is the (geometric) calculation the “area 

under the graph”. However, as can be seen from the interview with the mathematics teacher, this 

technique is not available to students from their high school education, neither is its evocation 

highlighted in the mathematics course when calculating the total amount in the context (of 

economics), although the teacher finds that it fits.  Regarding economics and the introductory 

courses of mathematics, we discuss whether simple ideas from financial literacy could provide a 

common ground for a meeting point, while at the same time bringing relevant mathematical ideas. 

This particularly concerns the use of different representations (or more widely ostensives in the 

terms of ATD), especially connecting verbal and graphic ones to symbols and formulas, which 

possibly reduces the gap between mathematics and its use in the workplace, which is to be explored 

in future.  
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Introduction 

Students are introduced to vector fields in introductory courses, typically in the contexts of electric 

and magnetic fields. Vector calculus provides several ways to describe how vector fields vary in 

space including the gradient, divergence, and curl of a vector field. Students who major in physics 

use vector calculus extensively in a junior-level electricity and magnetism course. Our focus here is 

exploring student reasoning with the partial derivatives that constitute the expressions for 

divergence and curl of vector field representations, which adds to the current understanding of how 

students reason with derivatives. 

Background 

Several previous studies in physics education research (PER) have examined student understanding 

of divergence and curl in post-introductory courses (Baily & Astolfi, 2014; Bollen et al., 2015; Gire 

& Price, 2012; Singh & Maries, 2013). These studies involved two-dimensional representations of a 

field as an array of vectors and asked students to determine the divergence and/or curl from these 

representations. Singh and Maries (2013) reported that even graduate students successfully 

calculating the divergence and curl of vector field functions were unable to interpret the divergence 

and curl of vector field plots. Baily and Astolfi (2014) and Bollen et al. (2015) performed similar 

studies with different diagrams and reported that around 50% of their students could correctly 

determine whether the divergence and curl of the vector field diagrams are zero or not.  

Previous studies have asked students to determine the sign or value of the divergence and/or curl for 

a given field diagram, but there has not been as much focus on the partial derivatives that constitute 

these operations, e.g., 
   

  
 and 

   

  
 for divergence or 

   

  
 and 

   

  
 for curl in Cartesian coordinates. 

This study explores student understanding of constituent derivatives of divergence and curl of 

vector field representations. 

Zandieh (2000) developed a theoretical framework for student understanding of derivatives, which 

was extended by Roundy et al. (2015) to include partial derivatives. Wangberg and Gire (2019) 

investigated student understanding of partial derivatives of scalar fields represented as surfaces 

using Zandieh’s framework. These existing works are restricted to derivatives of scalar functions 

and need to be extended to derivatives of vector quantities.  

Study and setting 

Written data was collected in the Mathematical Methods for Physics course, an intermediate course 

intended to prepare students for the advanced mathematics they will encounter in upper-level 

physics courses. All students had completed introductory sequences in both physics and calculus, 
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and the data were collected in the course after instruction on vector calculus. In our tasks, students 

were shown a 2-d field representation (see Figure 1) and asked to determine the signs first of the 

divergence and curl, then of the constituent derivatives. Field 1 (N=14) and Field 2 (N=32) were 

asked in different semesters at two public universities and due to small N, data are combined here. 

In this paper, only the results of constituent derivatives will be discussed. 

 

Figure 1: Vector field diagrams used in this study 

Results and discussion 

 

Figure 2: The figures for the tasks, with the components of the vector fields that students are expected 

to examine to determine. The lighter colored arrows are the components in the direction of interest: 
   

  
 and 

   

  
 for Field 1 in a and b respectively, 

   

  
, 
   

  
, 
   

  
 and 

   

  
 for Field 2 in c, d, e, and f, 

respectively 

Constituent derivatives for divergence 

To determine the partial derivatives of the vector fields, students were first expected to determine 

which component to consider and then identify how that component changes with respect to the 

corresponding direction in the denominator (see Figure 2). The first field has only    components 

and students were only asked to determine 
   

  
. For Field 1, 9 of 14 students were able to identify 

the change in    with respect to the x-direction. Somewhat surprisingly, determining 
   

  
 for Field 2 

was more challenging: only 34% (N=32) of the students answered correctly. An example of the 

most common incorrect reasoning was “arrows get smaller in the x-component as you move 

towards positive dx direction”. In a previous report, we have suggested that some students recognize 

that the magnitude of the vector is decreasing, but do not account for the negative direction of the 

vector and thus find the sign of 
   

  
 to be negative (Topdemir et al., 2023). More students correctly 

determined 
   

  
 to be zero for Field 2 (78%). 



 

 

Constituent derivatives for curl 

The constituent derivatives for curl are ‘mixed’ in that the component that is differentiated does not 

match the coordinate with respect to which one differentiates (i.e., 
   

  
 as opposed to 

   

  
). For Field 

1, only 2 of 14 students were able to identify the change in    with respect to the y-direction. For 

Field 2, more than 72% of the students (N=32) answered each of 
   

  
 and 

   

  
 correctly, but only 

50%  answered both derivatives correctly. When finding 
   

  
 for Field 1, some student responses 

suggested incorrect notation mapping (see Figure 3a), with explanations consistent with reversed 

components and variables. For example, the explanation for the sign of 
   

  
 is consistent with the 

reasoning for the sign of 
   

  
. Student responses for Field 1 (Figure 3b) stated that there is no change 

in the y-direction which could be interpreted as no change in the y-component (correct) or as no 

change with changes in the y-coordinate (incorrect). This response might thus be explaining 
   

  
 or 

   

  
 rather than 

   

  
. We suspect that determining 

   

  
 is more similar to finding traditional scalar 

derivatives of a function than finding 
   

  
, resulting in more students correctly determining 

   

  
 for 

Field 1.  

 

Figure 3: Student responses showing incorrect notation mapping to derivatives for Field 1 

For Field 2, 78% students answered 
   

  
 correctly. But there were still students who incorrectly 

mapped notations to derivatives. Figures 4a and 4b show responses from a student for 
   

  
 and 

   

  
, 

respectively, and suggest that this student mapped notations incorrectly for 
   

  
 and 

   

  
. In Figure 

4a, the response explains how    changes along the y-axis even though the question asked about 
   

  
. 

Similarly, the response in Figure 4b explains how    changes along the x-axis instead of 
   

  
. Our 

results show that dealing with derivatives of vector quantities has added additional complications, 

and more work needs to be done to understand student reasoning about partial derivatives of vector 

fields. 

  

Figure 4: Student responses showing incorrect notation mapping to derivatives for Field 2 (a, b) 

Colored text in response corresponds to similarly colored elements of derivative 



 

 

Conclusions and reflections 

We conclude from our work that determining the signs of the constituent derivatives of divergence 

and curl was a challenging task for students. Furthermore, some challenges were dependent on the 

properties of the specific vector fields, e.g., when the vector field had a single component or when a 

vector field component was negative. Student responses suggested confusion between the change in 

components and the change in a coordinate, perhaps indicating that students do not interpret the 

partial derivative notation correctly. We suggest that instructors may wish to integrate tasks 

including vector field diagrams into their class and develop instructional materials, since vector 

field diagrams can provide an avenue for students to link more procedural understanding with 

graphical representations and explicitly attend to the difference between the change in a component 

of a vector field component and the change in a coordinate. 

We have also examined student reasoning on the divergence and curl of these diagrams; results will 

be included in future work. We plan to complement and extend our investigation via clinical 

interviews. Also, different tasks will be included to further probe the extent to which reasoning 

depends on characteristics of the vector field. 

Acknowledgment 

This work is supported in part by the National Science Foundation under Grant Nos. PHY-1912087 

and PHY-1912660.  

References 

Baily, C., & Astolfi, C. (2014). Student Reasoning about the Divergence of a Vector Field. 1, 31–

34. https://doi.org/10.1119/perc.2014.pr.004  

Bollen, L., Van Kampen, P., & De Cock, M. (2015). Students’ difficulties with vector calculus in 

electrodynamics. Physical Review Special Topics - Physics Education Research, 11(2), 1–14. 

https://doi.org/10.1103/PhysRevSTPER.11.020129  

Gire, E., & Price, E. (2011). Graphical representations of vector functions in upper-division E&M. 

AIP Conference Proceedings, 1413, 27–30. https://doi.org/10.1063/1.3679985 

Roundy, D., Manogue, C. A., Wagner, J. F., Weber, E., & Dray, T. (2015). An extended theoretical 

framework for the concept of derivative. 18th Annual Conference on Research in 

Undergraduate Mathematics Education Proceedings, 1, 919–924. 

Singh, C., & Maries, A. (2013). Core graduate courses: A missed learning opportunity? AIP 

Conference Proceedings, 1513, 382–385. https://doi.org/10.1063/1.4789732 

Topdemir, Z., Loverude, M. E., & Thompson, J. R. (2023). Physics Student Understanding of 

Divergence and Curl and Their Constituent Partial Derivatives. Proceedings of the 25th 

Annual Conference on Research in Undergraduate Mathematics Education. Omaha, NE. 

Wangberg, A., & Gire, E. (2019). Raising Calculus to the Surface: Extending derivatives and 

concepts with multiple representations. Calculus in Upper Secondary and Beginning 

University Mathematics, 122. 

Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of 

derivative. CBMS Issues in Mathematics Education, 8, 103–127. 

 



 

 

The use of modeling in the learning of differential equations in an 

economics course 

María Trigueros
1
 and Rafael Martínez-Planell

2
  

1
Benemérita Universidad Autónoma de Puebla, México; mtriguerosg@gmail.com  

2
Universidad de Puerto Rico en Mayagüez, Puerto Rico; rmplanell@gmail.com  

 Economics majors at the university are usually introduced to differential equations from the 

mathematics point of view, complemented with examples of applications to their discipline. The 

study of differential equations has become very important in a wide variety of disciplines. Given the 

importance of dynamic problems in Economics, they have also become an object of study for 

Economics students at many universities. However, most courses focus on the mathematics of this 

discipline, and applications are used to illustrate the theory and different solution methods that 

students may find in their economics courses and to use their calculus knowledge together with 

what they know about economics to approach them. Although modeling has been used successfully 

in differential equation courses (e.g., Chaachua & Saglam, 2006), it has been seldom used in 

mathematics courses for economics students (Trigueros, 2014). 

In this paper, we present a modeling experience in the context of a differential equations class for 

students in an economics course. Our research questions are: how do students approach an open 

modeling situation where they can use their mathematical and economics knowledge? Which 

important and powerful conceptual ideas do students develop throughout the experience? 

Theoretical framework 

We use APOS (Action, Process, Object, Schema) theory as the theoretical framework for this study 

(Arnon et al., 2014). One of the fundamental objectives of APOS is to stimulate learning by 

developing pedagogical activities based on a theoretical model used in the classroom following a 

didactic cycle and validated by research results. The main constructs of the theory are the structures 

needed in the construction of mathematical concepts: Actions, Processes, Objects, and Schemas, 

and the mechanisms involved in the construction of those structures. In this paper, we use mainly 

and only describe the Schema structure. A Schema for a mathematical concept is a collection of 

Actions, Processes, Objects, and other Schemas. They are dynamic structures that are continuously 

changing. The development of the Schema is described in APOS theory by means of Piaget’s triad 

stages (Arnon, 2014). The Intra-stage is manifested through the existence of isolated or weakly 

related structures. Relations at this level can be considered correspondence relations. In the Inter-

stage, transformation relations are developed among the structures composing the Schema; 

structures are grouped and can even be identified by the same name. The Trans- stage is 

characterized by the construction of synthesis among the structures in the Schema, or a unifying 

principle; there is awareness of the relations, and conservation relations are constructed. When a 

Schema is coherent, the students can decide if it can be used in a specific situation.  

To use APOS theory, it is necessary to develop a genetic decomposition (GD). This model is used 

to predict how concepts are constructed by describing the structures and mechanisms that 
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researchers consider are needed to construct the concepts of interest. In the case of a Schema, it 

describes the structures included, together with the type of relations and unifying principle needed 

in its development. GDs must be tested by research studies. A GD need not be unique.  

More recently, the possibility of constructing mathematical objects by doing actions on mental 

objects not directly related to mathematics has been studied (e.g., Trigueros, 2014). This occurs 

when modeling is used to introduce mathematical concepts. The modeling process can be described 

in terms of APOS: When students need to model, they coordinate mathematical and non-

mathematical Schemas to solve the problem. Students take the structures needed to select variables 

from these Schemas and formulate their initial hypotheses, possible simplification, and their 

mathematical expression. Starting from these hypotheses, it is possible to perform actions on the 

mathematical and extra-mathematical variables to establish relations between them. These actions 

are interiorized into processes that allow to manipulate and transform the original relations. 

Processes from extra-mathematical Schemas are coordinated with processes from mathematical 

Schemas. The result of that coordination is a process describing a mathematical model that can be 

encapsulated into an object. Actions and processes are then performed on the model to analyze it, 

determine its properties, and ask new questions that may lead to its modification. This cycle can be 

repeated until an appropriate model is found (Trigueros, 2014). In this study, we used an existing 

genetic decomposition for differential equations (Trigueros, 2014) and the economics Schema 

components of diffusion speed and pattern as Processes. 

Methodology 

The research was conducted within a Differential Equations course for twenty-seven students in an 

Economics program at a university in Mexico. Students were asked to develop a model to predict 

how an innovative product would spread in a community. Students worked in teams of three 

students in the classroom and at home for a month. Students could select the innovation to study 

and had to turn in a report based on their data and a clear explanation of their findings, that is, the 

model development; data collection; use of data to test the models’ predictions, and a conclusion 

about the quality of those predictions. If they concluded their model was not good enough, they had 

to suggest how to modify their initial proposal. The researchers analyzed all the information 

gathered during the modeling cycles and from the observation of groups and whole class 

discussions, and discussed with two teachers for triangulation. Students had taken a sequence of 

one-variable and multivariable Calculus courses. When the project started, students had already 

developed a price model as an introduction to differential equations. The teacher used activities for 

students based on the differential equations GD to introduce and formalize new concepts and help 

them do the needed constructions. The model could but need not include differential equations. In 

fact, initial models included algebraic or graphical representations, but variation considerations 

started to appear through group discussions and work on activities. The problem required several 

modeling cycles. We designed observation guides for the teacher and one observer to follow 

students’ work and document students’ important ideas in class. Students had to hand in their work 

at the end of each cycle. The researcher and a teacher analyzed these separately and negotiated the 

results. All the data were used to study the evolution of students’ Schemas and to underline 

powerful ideas developed by groups of students. We show the results according to the broad cycles.  



 

 

Results 

The first cycle started with teams describing how they considered innovations to spread in society. 

Six teams used the analytical expression of an exponential function or drew its graph. In one of 

them, students discussed the need to use another function that would approach a limit and drew a 

graph similar to a logistic function. In the others, students discussed using models for the change of 

the function instead of the function itself. These last teams suggested some hypotheses to develop 

their model. One of them proposed that the change in the number of people “buying” the innovation 

depended on time and the number of people who could buy it; they used that the change in buyers 

could be considered proportional to the buyers’ population. Another considered that different 

segments of the total population would act differently towards an innovation and that the change of 

users of the innovation had to consider the sum of those populations that would grow in different 

ways according basically to their initial resources. The third group assumed that a fixed number of 

people would be interested in the innovation and proposed that the adopters’ change would be 

proportional to the number of adopters of the innovation minus the proportion of people who had 

been interested but had not adopted it. All students showed the construction of correspondence 

relation between function and time or derivative and time and innovation spread considerations. 

Some students suggested the need to introduce the initial population getting the innovation 

explicitly in the model but were finally convinced by other students that it was not needed. After the 

whole group discussion, all teams developed a model including the change of the adopters of the 

innovation with time but differed on the proposed model; one team used N’ = kNt, three teams used 

the model N’ = kN, and five teams used the model N’ = kN- j(T-N) with T being the total population 

interested in the innovation.  

Students used their function, derivative, and economics knowledge Schemas from the start. They 

used their hypothesis to write a model. They coordinated their economics and derivative Schemas 

into a new differential equation Schema (DES) which they had not studied before.  

During the second cycle, students analyzed their models using prior knowledge to determine how 

the innovation would spread. Students struggled, but through collaboration they were able, for 

example, to relate the derivative in the first and second models with the growth of the function 

using Calculus, showing to have constructed correspondence relations between derivative and 

function, and by drawing a curve describing the growth of the adopters in time. A team decided to 

use the second derivative and decided the curve was concave up. The same happened in two other 

teams where students determined that the function would grow when N<T and decrease if N>T, 

“which does not occur in this problem.”  One team used the second derivative to analyze concavity 

and found that the function had an inflection point. These students showed the construction of a 

transformation relation since they conceived the derivative in such a way that they could explain 

how the first and second derivatives transform the function. One student of this group suggested 

graphing N’ versus N “since the time does not appear explicitly in the equation.” Doing this, they 

discovered a new way to analyze the behavior of the solution without solving the equation, which 

showed the construction of a conservation transformation relation; “When this line is zero that 

means there is an equilibrium solution and we see here that the innovation curve will tend to it.” 

During whole class discussion students described their findings and the teacher formalized students’ 



 

 

findings. This cycle shows DES-Schema development. For some students, Schemas develop as 

Inter-DES resulting from the transformation relations, and for one team, as Trans-DES given the 

construction of conservation relations between Schema components. The students who constructed 

a Trans-DES Schema found in the phase space a new representation and important new tool to 

analyze the solution function.  

The third cycle began when the teacher asked students to use their calculus knowledge to solve the 

equation in their model. Students who used the logistic model constructed new transformation 

relations since they had to write their equation in a way that made it possible to determine the 

appropriate integration method to find the solution. While students using the exponential model 

constructed new correspondence relations. The whole class discussion was devoted to the 

explanation of integration methods. Finally, as homework, students looked for data. Different teams 

selected different innovations and compared the data with the prediction of their model after using 

the minimum square method to find the value of the model’s parameters. They also showed their 

results through graphical representation and gave their interpretation and critical comment about  

their model’s predictions. 

Discussion 

This experience exemplifies the way modeling can be used to get economics majors interested in 

the use of mathematics and foster an understanding of what is a differential equation and its 

usefulness in other disciplines. Students were so involved in their work that they developed the 

phase plane on their own. Students were able to use their previous calculus knowledge to interpret 

the behavior of the solution without solving the equation and related the phase space representation 

with the graph of the solution before solving it: They considered the solution as a function. 

The experience contributed to the development of students’ DES Schema. Even though the Schema 

developed is a simple DES Schema, the possibility to construct different relations between its 

components opens the door to its further development through course activities. The results of this 

study show that when teachers give students the opportunity to work by themselves on an 

interesting problem, students can use their previous mathematics and economics knowledge and 

their previous everyday experience in new and creative ways, verify that their thinking makes sense 

in terms of the problem situation, and develop a way to solve the problem. 
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Introducing the problem 

Physical concepts are expressed in terms of mathematical structures. Using mathematics in physics 

requires more than the straightforward application of rules and mathematical procedures. 

Mathematics does not only have a technical role, but also a structural one (Uhden et al., 2012). The 

idea of teaching mathematics as a basis for physics is outdated. In this study, we see mathematics 

and physics as two disciplines that are intertwined and have the potential to enhance each other. 

When mathematics and physics are blended, new ideas and inferences emerge, resulting in an 

enhanced understanding of both (Bing & Redish, 2007). In the learning process, the physics 

reasoning informs the mathematical thinking which in turn informs the physics (Brahmia, 2017). 

The (1D) heat equation is one of the ‘standard’ partial differential equations taught in the 

undergraduate program of physics and mathematics majors. This partial differential equation 

models the evolution of the temperature  at position  and time  in a one-dimensional system of 

length :  for  and . In this equation,  is the (constant) 

thermal diffusivity (Farlow, 1993).  Heat flow is an important physical concept in the context of the 

heat equation. Heat flow is described by Fourier’s law . It states that the 

heat  that flows through a unit area per unit of time is proportional to the negative temperature 

gradient. 

In this study, we designed a tutorial that focuses on the learning goal “After completion of the 

tutorial, the students can explain how  gives information about the heat flow through a 

certain position at a certain moment in time. The partial derivative with respect to position is more 

challenging to interpret physically for students than the derivative with respect to time. Therefore, 

in this study, we developed and evaluated a learning path to support students in making the 

connections between the mathematical and physical concepts involved. 

Theoretical framework and design of the tutorial 

The three design principles that guide our design are: (1) giving explicit attention to both the 

mathematical and the physical aspects, (2) stimulating graphical reasoning , and (3) guiding 

students to (de-)encapsulate the partial derivative in order to blend mathematical and physical 

meaning. The third design principle is the most important for this paper. Figure 1 visualizes the idea 

of blended encapsulation, which is based on a combination of several theoretical frameworks and 

constructs: conceptual blending (Fauconnier & Turner, 1998), Zandieh’s framework for the concept 

of derivative (Zandieh, 2000), and encapsulation (Dubinsky, 1991).  
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Zandieh developed a theoretical framework to clarify, describe and organize the different aspects of 

the understanding of the concept of derivative. Her framework is built on two main components. 

multiple representations form the columns, and the rows consist of different layers of process-

object pairs. The concept of derivative can be expressed using different representations (see Figure 

2 for examples in the different columns). In the original framework, Zandieh included a column 

‘other’ to account for all other contexts or representations in which there is a functional relationship 

for which one may discuss the concept of derivative. In the context of our tutorial, we extend it with 

columns focusing on physics to represent the blending that has to take place in order to formulate 

the relation between  and heat flow. The derivative of a function  is a function whose 

value at any point is defined as the limit of a ratio of a difference. These three underlined aspects of 

the concept of derivative form the layers of the framework in Figures 1 and 2.  Each layer can be 

seen as both a dynamic process and a static object. Processes are operations on previously 

established objects. Each process is reified into an object to be acted on by other processes. The 

process-object pairs form a chain where one can move within a layer from a process to an object, 

and where this resulting object is acted on in turn by the process at the next layer. The mechanism 

behind this concept construction is described by encapsulation (Dubinsky, 1991). Projecting this 

onto our context of the partial derivative , encapsulation happens when students learn how 

the concept of (partial) derivative is structured by its underlying processes and objects at the 

different layers. Once the (partial) derivative is encapsulated, the students can apply actions on this 

partial derivative without constantly acknowledging all the underlying concepts. However, they 

should be able to de-encapsulate the concept and access these separate underlying processes and 

objects (see vertical arrows in Figure 1). 

 

Figure 1 Visualization of the third design principle: blended encapsulation 

We use this theoretical foundation to develop an instructional approach that stimulates students to 

formulate the relation between the partial derivative  and heat flow. We hypothesize that 

guiding the students to form this blend at the difference layer and then encapsulate that blend to the 

limit layer might be a fruitful way to build the relation between  and heat flow. Therefore, in 

the developed tutorial, we guide students in making the blend at the difference layer and then foster 

blended encapsulation, i.e. encapsulating the concept of partial derivative while maintaining the 



 

 

connections between the mathematical and the physical concepts. Figure 2 shows the details of the 

concept construction per layer and representation.
1
  

 

Figure 2 Overview of the blended partial derivative framework for the relation between  and heat flow. The 

table shows how the developed tutorial tasks (1.j, 1.k, 1.l and 1.m) relate to the framework 

Exploratory evaluation of the blended encapsulation approach 

We tested the tutorial in a teaching-learning interview setting. This allows us to see in detail what 

reasoning is induced by the tasks in this tutorial. We conducted interviews with three groups of 

three second year undergraduate students majoring in mathematics and/or physics at KU Leuven 

who completed a course on differential equations in the previous semester. We treated each group 

as a case study and provided a “thick description” of the reasoning process complemented with 

excerpts from the transcript in order to present how each group responded to the developed tasks. 

The framework (Figure 2) is used to interpret each group’s reasoning steps and situate their answers 

in terms of the different layers and representations. Hence, the framework plays a double role in this 

study: in design and analysis.  

Overall, we see that all groups eventually formulate the relation between  and heat flow at 

the limit layer in response to task 1.m (see Figure 2). However, we observe that the reasoning 

leading up to that point does not always follow the blended encapsulation trajectory as intended. For 

Group 1, we conclude that the task design prompts the intended reasoning. The reasoning of group 

2, however, shows that following the intended path based on blended encapsulation in tasks 1.j-1.l 

does not guarantee a fluent conclusion in response to task 1.m. Group 2 forms the basis as 

anticipated in the design, but when asked to summarize their insights and once more relate all 

                                                 

1
 The developed materials and further explanation can be found in ‘Chapter 5’ at the following link: 

https://research.rug.nl/en/publications/blending-of-mathematics-and-physics-undergraduate-students-reason.  



 

 

concepts, they do not use that formed basis to reach the desired conclusion. They did reach this 

conclusion, but only after re-doing the whole reasoning. Group 3 also arrived at the correct relation 

between  and heat flow, but without following the intended learning path. The tasks failed to 

lead them towards , but instead they reasoned in terms of . Moreover, they did not 

answer parts of the tasks that were designed to foster the structure of the blended encapsulation 

sequence. Ignoring these prompts might partially explain why the blended encapsulation sequence 

did not have the intended effect for them. The reasoning of group 3 shows that it is also possible to 

formulate the intended conclusion in 1.m without following the blended encapsulation trajectory. 

However, the reasoning of group 3 was very brief and we cannot judge if they have understood the 

relation between the different concepts thoroughly. We do not see proof that their conclusion is 

based on understanding of the underlying layers.  

Generally, we conclude that the blended encapsulation approach has the potential to help students in 

recognizing the way temperature differences lead to heat flow and how these temperature 

differences between positions can be described using the concept of a partial derivative of 

temperature with respect to position. However, there are still some weaknesses in the current design 

that need to be optimized in order for the approach to reach its full potential.  

The blended partial derivative framework (Figure 2) can be adapted for any physical concept that is 

modelled by a (partial) derivative. This way, blended encapsulation can guide the instruction of 

these concepts, e.g. the more straightforward concepts of velocity and acceleration, but also more 

advanced concepts from electrodynamics or thermodynamics. By extension, the blended 

encapsulation approach could also be interesting for other mathematical concepts that have a similar 

layered structure, e.g. a definite integral. This opens the possibility of incorporating the approach 

for many more physical concepts. 
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Introduction 

Vector fields are important objects in both mathematics and physics.  In vector calculus courses, 

students are typically introduced to the idea of a vector field and learn about two different types of 

vector field derivatives, namely divergence and curl.  These two vector derivative operators are 

used frequently in electromagnetism, but students are not usually asked to consider other derivatives 

of vector fields.  There is a gap in the literature on student understanding of derivatives of a vector 

field other than divergence and curl. 

There are two main student approaches when trying to take a more general derivative of a vector 

field: a component-based approach, where students attempt to differentiate each component 

individually, and a geometric, vector-valued approach, where students subtract two nearby vectors.  

Within these broad categories, students can use a variety of methods and strategies to find a 

derivative, including graphical approaches, numerical approaches, and utilizing what they know 

about divergence and curl.  These techniques may not be available to a student at the same time, 

depending on the information the student has, and how much experience the student has had with 

derivatives and vector fields.  Due to the unfamiliar nature of a more general vector field derivative 

than divergence and curl to many undergraduate physics and mathematics students, it is of interest 

to study the approaches students take when attempting to differentiate a vector field. 

In this study, three junior-level physics students were asked to think about taking a derivative of a 

vector field.  Each student displayed evidence of confounding the components of the vector field 

with either the independent variables (two students) or the basis directions (one student), thus 

impacting their ability to recognize that a derivative can also be a vector field.  We analyze the 

interview data related to confounding, and discuss implications for instructors teaching calculus. 

Literature review 

Student understanding of derivatives and vector fields is of interest to both mathematics and physics 

education, and the current literature shows a wide variety of concepts, misunderstandings, and ideas 

that students have when thinking about vectors and derivatives separately. This review spotlights 

the work of a few authors who study how students think about derivatives in a vector calculus 

setting, and notes the similarities and patterns that show up throughout the literature explored. 

There have been several studies that provide insight into students’ struggles and understanding of 

vector fields, particularly in the context of electricity and magnetism. For example, Dray and 

Manogue (1999) outline the differences between how vector calculus is taught in mathematics and 

the way vector calculus is used in physics, and the possible impacts this “gap” has on student 

understanding. They explain that mathematics courses emphasize algebraic understanding and 

calculations, whereas physics courses typically use graphical understanding and symmetry, with 
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less emphasis placed on algebra. The authors suggest that this disparity may contribute to student 

difficulties in understanding vector calculus in physics contexts, and suggest more communication 

between mathematics and physics instructors as a possible solution to the problem.  Similarly, Gire 

and Price (2012) found that students see variable and component as interchangeable when looking 

at algebraic representations of vector fields, and consequently creating a graph of a vector field 

from an algebraic function is exceptionally difficult for students They found that students have a 

particularly difficult time separating variable from component when the x component depends on 

the y variable and vice-versa. 

The Colorado Upper-Division E&M Instrument (CUE) has been used in many studies to test 

student understanding of electricity and magnetism. This instrument was developed by physics 

education researchers at the University of Colorado to measure how students think about a variety 

of concepts in electricity and magnetism, including vector calculus (Chasteen et al., 2012). Pepper 

et al. (2012) used interview data in addition to the CUE and found that students tend to focus on one 

part of vector fields (either direction or magnitude) when doing calculations. Whether the students 

focused on magnitude or direction differed depending on the problem, but the pattern persisted 

throughout the exam. The CUE also showed that students had difficulty understanding the physical 

meaning behind vector field operations, such as gradient, divergence, and curl. The students were 

able to calculate the gradient, divergence, and curl, but were often unable to explain what the results 

meant, corroborating the results of similar studies on student understanding of vector calculus. 

Methods 

Individual interviews had been previously conducted with four students at the end of the Static 

Fields Paradigms course at Oregon State University. The interviews aimed to determine how 

students think about partial derivatives of functions. The first phase of the interviews asked students 

to think about the partial derivative of a scalar-valued function, and the second phase of the 

interview prompted the students to think about the partial derivative of a vector field. Three of the 

four students completed both phases of the interview. This paper only focuses on the vector field 

phase of the protocol, although some students reference their work on the scalar field during the 

vector field phase. Students were encouraged to say their thoughts and processes out loud, and to 

write/draw on the provided paper throughout the interview. Each interview lasted approximately 90 

minutes, with each phase lasting approximately 45 minutes. 

At the time of the interview, the students would have completed the entire calculus sequence, 

including vector calculus 1 and 2, and the general calculus-based physics sequence. The students 

also likely had completed a sophomore-level course introducing ideas such as relativity, quantum 

physics, statistical physics, and other physical ideas from the 20th century. 

The interview transcripts and videos were analyzed qualitatively, in the style of Thematic Analysis 

(Aronson, 1995). Thematic analysis consists of several steps, including the identification of patterns 

in the data and sorting the data into subthemes. 

We identified confounding as a commonality among all three students interviewed.  Within the 

confounding pattern, we identified two subthemes, namely confounding variable with compoonent 

and confounding component with variable, only the first of which will be discussed here. 



 

 

Results 

We define confounding as imposing a strong relationship between two unrelated objects or 

concepts, resulting in a student treating the confounded objects or concepts as though an action on 

one imposes the same action on the other.  There are two different levels of confounding, which we 

call “strong” confounding and “weak” confounding.  A student who fails to recognize that the two 

objects confounded are distinct would be demonstrating strong confounding, whereas a student who 

recognizes that the objects are different but nonetheless treats them as indistinct or strongly linked 

would be demonstrating weak confounding. Alex and Bailey each demonstrated weak confounding 

of variables and components.  Due to space limitations we paraphrase only Bailey’s comments here. 

The interviewer asked Bailey if there was a way to figure out how the y component changes with 

respect to x, which appeared to cause Bailey to doubt his earlier claim that the y component changes 

with respect to x. These comments show that Bailey understood the distinction between variable 

and component, and that y was used to represent two things.  However, when trying to take a partial 

derivative with respect to x, Bailey did not know whether to hold the y component or the y variable 

constant. His previous discussion of divergence may have led him to the conclusion that only the x 

component should be differentiated when taking a partial derivative with respect to x, but he 

struggled when the interviewer asked if the y component was changing. This is an example of 

Bailey’s confounding, because although Bailey had previously expressed understanding that both 

components depend on both variables, he rejected the idea that differentiating with respect to x 

would give information about the y component. The interviewer’s prompt about finding how the y 

component changes with respect to x appeared to cause Bailey to doubt his previous claim, so he 

began to consider what it would mean to hold y constant. Bailey’s unconfounding process started 

when he realized that his previous difficulty was due to y representing both the y component and y 

variable.  Bailey did not know what he was supposed to be holding constant, and this uncertainty 

combined with the idea of divergence being recently on his mind likely led him to hold both the y 

component and the y variable constant, and only differentiate the x component with respect to x. 

Discussion 

Bailey started out by discussing divergence and gradient, both of which correlate variable with 

component, and clearly had difficulty imagining uncorrelated “cross terms”, such as those that 

would show up in curl. Although Bailey understood the difference between variable and 

component, he was unsure which to hold constant – a clear instance of weak confounding. During 

the course of the interview, Bailey began to identify the source of his confusion, thus beginning to 

unconfound variable and component. 

Although Alex demonstrated early awareness of the dependence on each vector component on both 

independent variables, he nonetheless acted as though there was a correlation, thus also weakly 

confounding variable and component. However, he was then able to use a graphical approach to 

unconfound these two objects. 

When analyzing physics students’ use of mathematics terminology, it is important to take into 

account the different ways that these two disciplines use and refer to derivatives. For instance, 

physicists predominantly use Leibniz notation for derivatives, assigning physical meaning to the 



 

 

infinitesimals in the numerator and denominator as “small changes”, whereas mathematicians 

predominantly use primes, implicitly emphasizing that differentiation is an operator that acts on 

functions. Furthermore, physicists use subscripts to denote components, whereas mathematicians 

use them to denote differentiation. These notational issues reflect different conceptual emphases, 

which can be especially confusing for physics students when first using physics notation to express 

gradient and divergence, precisely the context in which these interviews were conducted. 

Because the number of students interviewed is small, the conclusions this study draws and the 

implications thereof may not be indicative of the entire student body.  That said, given the strong 

evidence in this study that students confound variable with component, greater emphasis should be 

placed on distinguishing between them.  Explicit examples could be presented during instruction 

demonstrating that these two objects are not interchangeable, despite having similar labels.  An 

activity similar to the interview protocol, where students are given a vector field and asked to take 

its partial derivative, would force students to think about the dependence of the components on the 

independent variables outside of the context of divergence and curl, thus solidifying their 

understanding of the underlying concepts.  The extent to which notation can and should be chosen 

so as to reduce such student confusion is worthy of further study.   
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